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Several new features arise in the ground-state phase diagram of a spin-1 condensate trapped in an optical
trap when the magnetic-dipole interaction between the atoms is taken into account along with confinement and
spin precession. The boundaries between the regions of ferromagnetic and polar phases move as the dipole
strength is varied and the ferromagnetic phases can be modulated. The magnetization of the ferromagnetic
phase perpendicular to the field becomes modulated as a helix winding around the magnetic field direction with
a wavelength inversely proportional to the dipole strength. This modulation should be observable for current
experimental parameters in 87Rb. Hence the much-sought supersolid state with broken continuous translation
invariance in one direction and broken global U�1� invariance, occurs generically as a metastable state in this
system as a result of dipole interaction. The ferromagnetic state parallel to the applied magnetic field becomes
striped in a finite system at strong dipolar coupling.
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I. INTRODUCTION

Bose condensates of atoms with nonzero total spin F�1
show various phases combining magnetic and superfluid or-
der. When the magnetic symmetry is broken spontaneously,
as can occur when the atoms are confined in a spin-
independent optical trap, condensates are classified as “po-
lar” �for antiferromagnetic interactions� or “ferromagnetic.”
Most theoretical studies of these spinor Bose condensates
neglect the long-range interaction between atomic magnetic
moments and this neglect is justified for many experimental
conditions. However, recent experiments1–3 investigating or-
dering in a nearly two-dimensional �2D� condensate have
shown complex magnetic behavior in the ferromagnetically
interacting F=1 spinor Bose gas of 87Rb.

The most surprising feature of these experiments, which
image the spin distribution in real space, is a long-lived
phase that appears to have the broken global U�1� invariance
of a superfluid along with possible breaking of the continu-
ous translational symmetry in one or two directions, i.e., with
stripelike or checkerboardlike order. A possible supersolid
phase has recently also been suggested in the superfluid of
4He.4 Many theoretical papers have been written about the
properties of 4He and whether a supersolid phase can exist in
the absence of disorder. Only recently have theoretical stud-
ies been done to explain the observed supersolidlike behav-
ior in a 87Rb spinor condensate.5 The earlier studies of 87Rb
concentrated on magnetic properties arising from the weak
spin-dependent local interaction and the quadratic Zeeman
shift. More recent experiments2,3 indicates that the long-
range dipole interaction also plays an important role in the
formation of the magnetic phases in spatially large systems
and with this addition a supersolid state might be possible.

Most previous studies of this system concern dynamical
properties: the leading instability when the Hamiltonian is
changed to favor ferromagnetic order can be stripelike or
checkerboardlike depending on parameters.5–7 In this paper,
our goal is to determine the static ground-state phase dia-
gram. We start from the phases that are well established at
low temperatures8–11 for a spin-1 gas with no dipole interac-
tion and quadratic Zeeman effect. �Low temperatures mean

below the superfluid and magnetic transitions where all the
studies in this paper will take place.� We then add the dipole
interaction to see how it changes the phases as well as the
location of the boundary between them. We do this in a
quasi-two-dimensional geometry as in the experiments.1–3

We investigate both an infinite and a finite square planar
geometry. After observing the formation of two kinds of
stripe order in a Monte Carlo simulation, we developed an
analytical approach to explain the results, based upon small-
ness of the dipolar coupling at short distances. That analyti-
cal approach is presented first in order to prepare the ground-
work for the simulation results.

We show that all boundaries in the phase diagram, except
between the two polar phases, are moved when the dipole
interaction is added, some in a nonintuitive way. The
magnetic-dipole interaction prefers a ferromagnetic state but
the confinement makes a ferromagnetic state out of the plane
energetically unfavorable. Moreover, the spin precession
make the in-plane perpendicular ferromagnetic state unfavor-
able since the spin rotates out of the plane. Both ferromag-
netic phases can get modulated in one direction. The phase
parallel to the external fields needs a strong dipole interac-
tion or a system much wider than its length to become modu-
lated. This modulation appears as fully magnetized stripes
with sharp domain walls between them. The phase perpen-
dicular to the external fields gets modulated, from the very
lowest dipole strengths, into a helical configuration around
the field. The wavelength of the helix is inversely propor-
tional to the dipole strength. For 87Rb the wavelength is
�80 �m and should be observable in experiments.

The outline of this paper is as follows. In the following
section, we review the basic physics of spinor condensates
without the dipole interaction. In Sec. III we introduce the
dipole interaction and put it into a form that is convenient for
numerical simulations. Section IV presents analytical results
in the limit of weak dipole interaction and Sec. V contains
the results of our Monte Carlo simulations of the problem.
The final section summarizes the relationship between our
results and those of other theoretical papers and suggests
how future experiments could be designed to observe clearly
the metastable supersolid phase found in our simulations.
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II. REVIEW OF SPINOR CONDENSATE WITHOUT
MAGNETIC DIPOLE INTERACTION

A Bose-Einstein condensate �BEC� of spin F=1 atoms is
described by a three-component complex order parameter

��x� = �n3D�x���x� = �n3D�x���+1�x�
�0�x�
�−1�x�

� , �1�

where the spinor ��x� is normalized as �†�=1 and the sub-
scripts label the spin eigenvalue with respect to an arbitrarily
chosen quantization direction. In the absence of external
fields and neglecting the dipole interaction, the Hamiltonian
governing the condensate is8,9

H0 =� d3x� �2

2m
	��	2 +

c0

2
n3D

2 +
c2

2
n3D

2 M2
 , �2�

where m is the atomic mass, M�x�=�†�x�F��x� is the di-
mensionless magnetization �	M	�1�, and �Fi� are the three
generators of SU�2� in the spin-1 representation

Fx =
1
�2�0 1 0

1 0 1

0 1 0
�, Fy =

1
�2�0 − i 0

i 0 − i

0 i 0
� ,

Fz = �1 0 0

0 0 0

0 0 − 1
� . �3�

The first term in the Hamiltonian is the kinetic energy for
bosons with mass m. The next two terms are the spin-
independent and spin-dependent contact interactions, respec-
tively. The coefficients are given by c0= �4��2 /3m�
�2a2+a0� and c2= �4��2 /3m��a2−a0� with �a0 ,a2� the
s-wave scattering lengths in the channel with total angular
momentum �0,2�.

When c2�0 �ferromagnetic� it is energetically favorable
for this system to magnetize, M �0, while c2	0 favors a
“polar” state with M =0. The scattering lengths for 87Rb are
a0=101.8aB and a2=100.4aB,12 where aB is the Bohr radius
so c2 is negative and its condensate will be ferromagnetic in
the absence of external fields �still neglecting the dipole in-
teraction�. However, the condensate of 23Na will be in a
polar state.8

The external fields normally applied to a spinor conden-
sate consist of an optical trap and a uniform magnetic field
described by the following addition to the Hamiltonian

Hef =� d3x
U + q�†�B̂ · F�2��n3D. �4�

The trapping potential U�x� confines the condensate spa-
tially; for our purposes, its main effect will be to produce a
quasi-two-dimensional geometry. The quadratic Zeeman
shift q can be tuned independently of B with microwave
radiation, q=qB+qEM.13 We take the two sources as coaxial
along ẑ so we can use Eq. �4�. This is also the axis we
quantize the spinor along. The magnetic field also creates a
linear Zeeman term B ·�d3xn3D� that favors an uniformly

magnetized condensate. However, experiments on 87Rb have
not observed any tendency toward such relaxation over the
accessible time scales of several seconds,13 making the lon-
gitudinal component of magnetization conserved. �This as-
sumption does not apply in condensates of higher spin, such
as chromium.14� Normally, this component is chosen to van-
ish initially and can hence be ignored for the purpose of
energetics. However, the magnetic field also causes Larmor
precession of the magnetization perpendicular to it. This is
an important effect that needs to be taken into account as it
modifies the nature of the magnetic interaction on time scales
longer than the precession time.

The spin state of the condensate is governed by the pa-
rameters c2 and q as in Fig. 2.15 There are two different kinds
of polar states �c2	0�, one that minimizes ��Fz�2�=0 and
one that maximizes ��Fz�2�=1 the impact of the quadratic
Zeeman term. Respectively,

��
P�
� = ei
�0

1

0
�, ��

P �
,�� =
ei


�2�− e−i�

0

ei� � . �5�

Consequently, does the phase P�, with order-parameter mani-
fold U�1�, appears at q	0, while the phase P� appears
when q�0. Note that the range of � is only 
0,��, or alter-
natively that the order-parameter manifold for this phase is
U�1��U�1� /Z2.16 When c2�0 and q�0, both energies are
minimized by ferromagnetic states

��,↑
F �
� = ei
�1

0

0
�, ��,↓

F �
� = ei
�0

0

1
� �6�

giving a manifold U�1��Z2 �recall that we exclude the lin-
ear Zeeman energy from energetic considerations�, see Fig.
1. In the final quadrant of the phase diagram, however, no
ferromagnetic state minimizes the quadratic Zeeman energy.
The smallest impact of a ferromagnetic state on the quadratic
Zeeman term is ��Fz�2�=1 /2 for

��
F �
,
� =

ei


2 �e−i


�2

ei
 � . �7�

Consequently, for q�qc=2	c2	n3D the state will be a linear
combination of ��

P and ��
F with magnetization Mx+ iMy

=�1− �q /qc�2ei
 and manifold U�1��U�1�, see Fig. 1.
Above qc, the state will be the pure polar state P�.

Typical experimental values for 87Rb �Ref. 1–3� include a
peak density of n0=2.5�1014 cm−3, giving the interaction
strengths c0n0=1.9 kHz and c2n0=−9 Hz, while qB

�1.6 Hz and qEM can be tuned from roughly −50 to 50 Hz
and is normally taken coaxial to qB.13

A. Confinement

The optical trap in the experiment makes the gas effec-
tively two dimensional with a Thomas-Fermi radius rTF
�1.5 �m along the direction of tightest confinement.1–3

Since this is smaller than the spin-healing length 
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=��2 / �2m	c2	n3D��2.5 �m, we take the confinement to be
along the ŷ direction and treat the gas as frozen along this
direction; that is, we take

��x� = �n2D�x,z���y���x,z� , �8�

where we assume �dy��y�=1. In the following we will con-
sider one of two profiles ��y� as convenient, a boxcar profile
and a Gaussian

�1�y� =
1

K
��K/2 − y���K/2 + y�, �2�y� =

1

�y

� 2

�
e−2y2/�y

2
,

�9�

where ��x� is the Heaviside step function. We introduce a
common notation for the condensate thickness T and a three-
dimensional �3D� density n̄3D�x ,z� without y dependence

1

T
= ��� =� dy��y�2, n̄3D�x,z� =

n2D�x,z�
T

�10�

for the boxcar profile and for the Gaussian profile, to be able
to treat both profiles simultaneously in Sec. IV. In most of
our analysis these densities are also independent of �x ,z�,
except where we use a nonzero trapping potential U�x ,z� in
the plane.

B. Precession

Atoms with magnetic moment ��=gF�BM� perpendicu-
lar to the field precess at frequency 	�	B0= 	gF	�BB0 around
the fields. As usual, �B is the Bohr magneton and gF is

Lande’s g factor. For 87Rb, gF=−1 /2 and a field of B0
=150 mG produces a Larmor precession at 110 kHz, a scale
orders of magnitude larger than the contact interactions or
the quadratic Zeeman energy.

The Hamiltonian considered so far is invariant under the
spin rotation

�k�x,z� → Ukl�t��l�x,z�, U�t� = e−i�B0B̂·Ft �11�

and is hence unaffected by the rapid Larmor precession.
Therefore, adding precession does not affect the phase dia-
gram in the problem with only local interactions.8,9 However
when we include the dipole interaction in the next section,
both confinement and spin precession become important.

III. MAGNETIC-DIPOLE INTERACTION

The interactions considered thus far for a spin-1 conden-
sate are all local. However, the moments � will interact
through the long-ranged dipole interaction. This is weak for
87Rb relative to most other energies in the system but since it
is long ranged it will have an important impact on the mag-
netic phases. The initial studies of the spin-1 condensate ig-
nored this term8,15 but some recent works have included it
along with the effects of quasi-two-dimensional confinement
and rapid Larmor precession.5,6 Among other results, it was
shown that dipolar interaction renders the Larmor precession
unstable6 and we return to this point in the concluding sec-
tion. Until then we follow previous authors and assume that
this instability has significant effects only at late times and so
neglect it. Cherng and Demler examined the instability spec-
trum of a uniform ferromagnetic state within a mean-field
and collective-mode analyses. We will use the same physical
model but instead look at the ground-state phase diagram and
consider a wider range of parameters c2, q, and cd 
see Eq.
�12� below� with analytical and Monte Carlo calculations.

The total Hamiltonian we work with is

H = H0 + Hef + Hdip, �12�

where

Hdip =
cd

2
� d3xd3x�n3D�x�Mi�x�n3D�x��Mj�x��

� ��i� j�
1

	x − x�	
−

4�

3
�ij�

�3��x − x��
 . �13�

This is the same as the more usual expression with
��ij −3r̂ir̂ j� /r3 but split it into a part that is positive-
�semi�definite and a part that simply shifts the parameter c2
→c2−4�cd /3 �see the beginning of Appendix A for a fuller
discussion of the magnetic-dipole term�. Indeed, with two
integrations by parts the first term becomes the Coulomb
interaction for a charge density � · �n3DM�. We will typically
mean just this term when referring to “the dipole interaction”
since it is the difficult part. The strength of the dipole term is
given by cd=�0gF

2�B
2 /4�, where �0 is the vacuum perme-

ability, giving a value of cdn0=0.8 Hz for 87Rb. The effect
of confinement is less trivial for this term then for the others
and transforming to a rotating frame is also nontrivial since

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

x/
a

z/a

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

x/
a

z/a

0

1

2

3

4

5

6

7

8

0 1 2 3 4 5 6 7 8

x/
a

z/a

x/
a

8

9

10

11

12

13

14

15

11 12 13 14 15 16 17 18
z/a

(b)(a)

(c) (d)

FIG. 1. �Color online� Examples of possible spin configurations
in the plane. The external fields are along the horizontal axis,
Mz�x ,z� is plotted on the horizontal axis, Mx�x ,z� is on the vertical
for every plaquette, and Mx�x ,z� is not shown. �a� Uniform fully
magnetized F�, �b� striped fully magnetized F�, �c� uniform partly
magnetized F� / P� state, and �d� helical fully magnetized F�.
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the interaction couples spin directions to spatial directions.
See Appendix A for a full treatment of these effects. In the
following section, we discuss how the dipole interaction is
expected to modify the phase diagram when it is sufficiently
weak that the Hdip=0 ground states can be used as a starting
point.

IV. ANALYTICAL RESULTS

Adding the dipole interaction Eq. �13� will change the
phase diagram 
Fig. 2�. The term that looks like the spin-
dependent interaction will just move the whole phase dia-
gram up along c2 with

4�cd

3 . The energy from the Coulomb
part of the dipole interaction is always positive hence this
parts prefers a polar state with zero magnetization M =0.
Consequently, regions of Fig. 2 with polar states above c2

=
4�cd

3 will not change if we add the dipole-dipole coupling.
However, the rest of the phase diagram may be affected and
the phase boundaries will depend on cd as we now discuss in
some detail.

A. Weak dipole interaction

Adding a weak dipole term �weak compared to the
kinetic-energy term� will only change the phase diagram
slightly. We start out by ignoring any new phases and inves-
tigate how a weak dipole interaction will move the bound-
aries between the existing phases. The three magnetic terms
in the Hamiltonian are the spin-dependent contact interac-
tion, the quadratic Zeeman, and the dipole term. By compar-
ing the energy contributions from these three for simple An-
sätze we can locate the boundaries between different
minima, in a system with L the extent along z and W the
extent along x.

The polar phases are, of course, the simplest 
see Eq. �5��

EP� = 0, EP� = qn̄3DLWT . �14�

Consider next the phase F�, which appeared at q ,c2�0 in the
system without dipolar energy. The effective charge density

for such a state describes two quasi-one-dimensional lines of
charge located at �L /2, of length W. The self-energy of such
lines of charge is given by 2cd�n̄3DM�2WT2 ln W /T, see Ap-
pendix C, to leading order. The other two terms are easily
kept exact. Keeping terms of order A2 and A ln A where A
=L ,W, 
see Eq. �6��

EF� =
c̃2

2
n̄3D

2 LWT + qn̄3DLWT,+ 2cdn̄3D
2 WT2 ln W/T

�15�

with c̃2=c2−4�cd /3.
The transition in the left half plane between the states F�

and P�, see Fig. 3, will hence be moved up from c2=0 for a
system without dipole interaction to

c2c � 4cd��

3
− �L� , �16�

where �L= ln W/T
L/T will vanish in the large-system limit.

The region of the phase diagram with q	0 and c2�0 is
the most interesting due to the rapid precession of the per-
pendicular magnetization about the magnetic field and the
high dipolar-energy cost of spins pointing out of the plane.
Consequently, the region of F� / P� in the phase diagram will
shrink and the regions of P� and F� grow with the latter
extending to positive values of q. For a uniform condensate
with spins out of the plane, the Coulomb energy is equivalent
to that of a parallel-plate capacitor, giving an energy
2�cd�n̄3M�2T2LW /T to leading order, i.e., neglecting fring-
ing fields, see Appendix C.

Because of the precession, the spins will effectively aver-
age the out-of-plane and in-plane interaction energies with
equal weights. Consequently, the dipole energy for magneti-
zation perpendicular to the external fields is cd�n̄3M�2��W
+T ln L /T�LT. To find the energy for the F� / P� state, we
first have to find M since this state is not completely magne-
tized. Consider a spinor �T= �a ,b ,a� with a=��1−b2� /2

FIG. 2. �Color online� Ground-state phase diagram of a spin-1
condensate without dipolar interaction; from Mukerjee et al. �Ref.
15�.

FIG. 3. �Color online� Ground-state phase diagram for a spin-1
condensate with dipole interaction and external fields that intro-
duces a quadratic Zeeman term and rapid spin precession. Both
polar and ferromagnetic phases appear perpendicular as well as par-
allel to the field.
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�1 /�2�b�1�, which represents a superposition of ��
P and

��
F 
see Eqs. �5� and �7��. Its magnetization is Mx

=2b�1−b2. Putting it all together

EF�/P� = 4b2�1 − b2�� c̃2

2
W + cd��W + T ln W/T�
n̄3DLT

+ qn̄3D�1 − b2�LWT . �17�

The energy for this state is minimized at

b2 =
1

2
�1 +

q

qc
� . �18�

As the notation suggests, the transition between the phases
P� and F� / P� occurs at q=qc, where EF�/P� =EP� =0 and M
=0

qc � 2	c2	n̄3D − 4cdn̄3D��

3
+ �W� , �19�

where �W= ln L/T
W/T will vanish in the large-system limit. As can

be seen in Eqs. �18�–�20�, the value of the magnetization and
hence the order parameter for the F� / P� state decreases con-
tinuously and is zero at the phase transition to the P� state

M0 = 	�F�/P��	 = �1 − �q/qc�2. �20�

This is exactly the same equation as for a system without
dipole interaction, except that qc now is given by Eq. �19�.
Plugging the form for b, Eqs. �18� and �19�, back in also
allow us to locate the transition between F� / P� and F�,
where EF�/P� =EF�, which will occur at

qc2 ��qc�2	c2	n̄3D + 8cdn̄3D��

3
− 2�L�
 − qc.

�21�

Finally, the transition between F� and P� will take place when
EF� =EP� =0, at

qc3 �
	c2	n̄3D

2
+ 2cdn̄3D��

3
− �L� . �22�

The three transition lines �qc, qc2, and qc3� separating the
three phases in the lower right quadrant meet at the point

�q,c2� = 4cd�n̄3D��

3
+ �W − 2�L�,��

3
+ 2�W − �L�
 .

�23�

To finish the phase diagram, we see that the transition line in
Eq. �22�, that separates F� and P�, can be extended to the
region q ,c2	0, with the substitution 	c2	→−c2 and that it
will intersect with the transition line in Eq. �16� at the point
�q ,c2�= �0,c2c�.

B. Magnetization textures

The dipolar energy favors spatially modulated ferromag-
netic states, which screen the long-ranged interaction, over
uniform states. Consider the state F�. We can adapt a classic

argument of Kittel concerning the formation of magnetic do-
mains to the present quasi-two-dimensional geometry.17 The
boundary energy 2cdn̄3D

2 WT2 ln W /T from before will be-
come 2cdn̄3D

2 WT2 ln d /T if the uniform state breaks up into
Ising-type domains of width d and length L that alternate
between Mz=1 and Mz=−1, keeping the total magnetization
M0=1 everywhere, see Fig. 1. There will be a cost in kinetic
energy at the domain walls and the competition between
these two effects sets the domain size.

We can estimate an upper bound for the domain-wall en-
ergy by assuming its width is the spin-healing length 
S. The
energy will scale with the area of the wall �LT and the
surface density will be �W��2n̄3D /2m
S. With the number
of domains given by W /d, the energy is

E = �W
LWT

d
+ 2cdn̄3D

2 WT2 ln d/T , �24�

which gives

d� =
�W

cdn̄3D
2 T

L . �25�

The resulting domains have a width proportional to the
length of the system and are very large when the dipolar
coupling is weak. In 87Rb with the experimental parameters
given in Sec. II A, �W�104 Hz �m−1 and d� �20 L, which
could be difficult to achieve experimentally.

For a rectangular sample �L	W� in the F� state with a
constraint of zero total longitudinal magnetization
��
dxn3D�x�Mz�x��=0�, it can be more energetically favor-
able to split up into two domains perpendicular to the field.
The energy for this configuration is E=2�WWT
+3cdn̄3D

2 WT2 ln W /T to leading order and if this is lower
than the energy in Eq. �21� it will occur. However, this is
only due to the constraint; a domain-free configuration has
lower energy and a configuration with several domain walls
perpendicular to the field will not be favorable for any values
in the phase diagram.

For the F� state, a different modulation will appear. In
particular, since the state is XY-like �the rapid Larmor pre-
cession gives the same energy for all perpendicular spin di-
rections�, it can adopt a smoothly varying magnetization tex-
ture. The smoothest form will be a helix with wave vector
along the magnetic field, see Fig. 1. In other words, as shown
in Fig. 4, the magnetization will adopt a configuration such
as Mx�z�=sin�kzz� and My�z�=sin�kzz+ �

2 � at any instant of
time. The kinetic energy of such a state goes as kz

2 while the
dipole energy turns out to decrease as kz for small kz; see
Appendix B for details.

At leading order in the dipole strength, then

kz
� �

1

�z
� �

cdn̄3DT

�2/2m
�26�

with �z
� the wavelength of the helical modulation, for a deri-

vation see Appendix C. In 87Rb with experimentally acces-
sibly densities the wavelength is approximately 80 �m and
should be observable. Note that the scales for the two tex-
tures are related by d� ��z

��L /
S�.
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Since the modulations of F� and F� decrease the total
energy of those states, their regions of the phase diagram,
Fig. 3, will be larger than predicted in the previous subsec-
tion. However, the dipole strength must be large to introduce
domains into the F� state; and the energy gain in a helical
texture relative to a uniform F� is small; so the phase bound-
aries will not change significantly at weak or moderate di-
pole strengths when we take these textures into account.

V. NUMERICAL RESULTS

We investigate numerically the ground-state phase dia-
gram of a spin-1 condensate in external fields that give rise
to a quadratic Zeeman shift and Larmor precession. The Me-
tropolis algorithm18 allows us to efficiently locate minima of
a given energy functional. We discretize the system on a
lattice and for the fundamental move we draw random de-
viations in the six real components of the field � from a
normal distribution at a lattice site. The initial state is simi-
larly generated from random normally distributed variables.

A wide variety of simulation parameters �N, a, �y, TMC,
TMF

c , �, and c0, see below�, for example, 1�1�N�50
�50, have been used to investigate the phase diagram
�c2 ,q ,cd�. Energies have been calculated in Hz and the
lengths have been inserted in �m. Unless otherwise noted,
numerical results presented here use lattice constant a
=4 �m, thickness �y =2 �m, and a system size of N=30
�30 plaquettes. We also add a chemical potential to the
energy, �=1202 Hz �m−2, in order to reproduce the experi-
mental density for c0=1.9 kHz. Finally, we set TMC
=23 nK in the Metropolis weight e−�H�/kTMC, which strikes a
good balance between reducing fluctuations and achieving
convergence in a reasonable computation time and use a
critical mean-field temperature TMF

c =100TMC.
The phase diagram we have mapped out numerically

agrees well with the results presented so far. In particular, we
have confirmed that the ferromagnetic states develop modu-

lations governed by the strength of the dipole interaction.
The algorithm described above tends to get trapped in

local energy minima with varying densities of domain walls
in the F� region of the phase diagram. We can, however,
locate the global minimum fairly confidently by starting the
system in a variety of modulated states �striped or checker-
board� and comparing the final energies. The existence of
metastable states as a consequence of dipolar interactions has
been discussed before for spinor condensates in an optical
lattice.19 We have not observed any tendencies for the simu-
lation in the F� / P� region of the phase diagram to be trapped
in a local energy minima, regardless of the initial configura-
tion. This is as expected since any possible local ground-state
configuration 
Eq. �7�� can smoothly turn into another unlike
in the F� case 
Eq. �6��. This symmetry between the two
transverse components of the magnetization is present in the
Hamiltonian without the dipole interaction removed by the
dipole interaction and finally restored by the rapid Larmor
precession. However, even if the relaxational dynamics of
the Metropolis algorithm used here does not apparently get
trapped in a local minimum in this phase, the actual dynam-
ics of the experimental system is primarily precessional
rather than relaxational, which could lead to metastable
states.

A. Domain walls in F¸

Near the transition qc2�c2 ,cd�, Eq. �21�, magnetization
vortices with unit spin winding develop all the way along all
domain walls, see Fig. 5. The vortices are alternating ellipti-
cal and hyperbolic Mermin-Ho vortices with ferromagnetic
cores.8,20 The density of vortices increases with increasing
dipole interaction, i.e., more domain walls appear and the
longitudinal length of each vortex decreases. The transverse
length of the vortices increases with increasing quadratic
Zeeman strength up to the transition line, which can be seen
in the Fourier transform of the magnetization

Mz�kx� = �
r,s

e−irkxMz�r,s� �27�

as a rise in My�kz
max�; see Fig. 5 on the F� side of the transi-

tion. The transition at qc2 itself remains sharp and no vortices
are observed for q	qc2. At a given instant in time does the
perpendicular magnetization in all vortices in a domain
boundary point in a specific direction. The correlations be-
tween the direction of the transverse magnetization of vorti-
ces in different domain walls are however weaker.

B. Boundaries and trapping potential

Finite-size effects and the details of the trapping potential
seem to have little impact on our results. The only finite-size
effect observed with hard-wall boundaries is a decrease in
magnetization at the z= �L /2 boundaries in the transition
from F� to P� as shown in Fig. 6. The approximative loca-
tion of this transition line from the analytical calculation, Eq.
�16�, is 	c̃2c	n̄3D=3.4 Hz.

We have also carried out simulations with an elliptical
trap potential of the form U�x�=U
vz�

z
a �2+vx�

x
a �2�, typically
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FIG. 4. �Color online� Transverse magnetization as a function of
z, from numerical simulation. Orange �triangles�: magnitude of total
magnetization M0, blue �stars�: transverse magnetization in plane
Mx, and black �disc�: transverse magnetization out of plane My. A
helical modulation with wavelength ��85 �m is clearly visible.
Simulation values: 	c̃2	n̄3D=320 Hz, cdn̄3D=0.8 Hz, and q
=100 Hz �edges removed�.
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with U=625 Hz �m−2 and vz ,vx=1–10 to more closely
model experimental conditions.1–3 These simulations have
shown no effect other than a decrease in the density and
thereby related effects as in the original paper of Ho on
spinor condensates in optical traps.8 For example, the wave-
length of the helical modulation in F� / P� is inversely pro-
portional to the density, see Fig. 7 which shows a change in
wavelength through the condensate as the density changes.
In particular, we have not seen the effect reported by Ven-
galattore et al.3 in which the modulation wave vector is not
aligned with the applied magnetic field but is instead influ-
enced by the orientation of the trap.

VI. DISCUSSION

We have mapped out the complete phase diagram for the
model we have considered. Although the region occupied by
the phase F� / P� moves and shrinks with the introduction of
the dipole interaction, we find that it remains accessible at
physical values of 	c2	 and cd in 87Rb, for some values of the
quadratic Zeeman shift q. Hence, by tuning q for 87Rb ap-
propriately, the three phases F�, F� / P�, and P� should be
observable in experiments. We also find that a spatial modu-

lations should be seen in at least the second of those phases.
There are some disagreements between our result and

other results obtained theoretically and more important ex-
perimentally. The length scale in the experiment is smaller
than the pitch of the helical modulation we describe above
by a factor of 10, roughly, for typical parameters. Cherng and
Demler5 find a dynamical instability at a scale nearer that
seen in the experiment. That picture would suggest that even
if the phase diagram obtained here describes the system at
long times, the experimental system might instead reach a
long-lived metastable state. As explained in Sec. V above
while we do see metastable states in some parts of the phase
diagram, we do not see metastable checkerboard states in the
region probed by current experiments but this could be be-
cause the Metropolis dynamics of our simulation is not the
actual dynamics of the condensate even if their thermody-
namics are the same.

One challenge for this dynamical scenario is that in ex-
periments, an imposed helical configuration with pitch �
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FIG. 5. �Color online� Transition to F� / P� from F�. For q
slightly smaller than �a� qc2, large Mermin-Ho vortices appear be-
tween the stripes �plaquette size a=4 �m�. Mz�x ,z� is plotted on
the horizontal axis, Mx�x ,z� on the vertical axis, and My�x ,z��0
for the whole region shown at this instant. Consequently, the maxi-
mum value of the Fourier transform of the magnetization out of
plane Mx�kz

max�, see Eq. �27�, increase before the �b� phase transi-
tion. Simulation variables: 	c̃2	n̄3D=450 Hz and cdn̄3D=7.2 Hz,
and �a� q=35 Hz and �b� q=30–39 Hz.
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=2.4–4.8 Hz as a function of z /a. Around the transition point is
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Simulation values: N=20�20, cdn̄3D=5.7 Hz, and q=−4 Hz.
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FIG. 7. �Color online� Simulation of a helical-modulated mag-
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=50–150 �m �Ref. 2� quickly evolves into a state modu-
lated at a smaller scale, again roughly ten times smaller than
the stable, or at least metastable, supersolid state we
predict.2,3 This suggests that effects we have not taken into
account prevent the current experimental system from find-
ing this minimum. As an example, it is known that the dipole
interaction makes the Larmor precession unstable, according
to Lamacraft;6 as a result, the Larmor-averaged energy that is
the main focus of the present work might not be an accurate
description for long times.

In order to observe the predicted supersolid clearly, our
results suggest that the key is to suppress this Larmor insta-
bility while at the same time preserving the conservation of
total magnetization in the field direction. The Larmor
instability6 grows exponentially from thermal excitation of
an initial perturbation at the Larmor frequency �L. Hence the
time scale to reach a fixed final size of the instability is
proportional to ��L / �kBT� and can be increased either by
increasing the magnetic field or decreasing the temperature.
At the same time, an experiment should be designed to pre-
serve the magnetization along the field direction for as long
as possible, which requires a high degree of trap uniformity.
One motivation for continued exploration of this system is
that our results show that the Larmor-averaged system does
have a supersolid ground state for a wide range of param-
eters.

Note added. As this work was being prepared for submis-
sion, two e-prints appeared investigating the same experi-
ment by slightly different approaches.20,21 The first, by
Zhang and Ho, also investigates the static properties of 87Rb
using a deterministic numerical method and also gets the F�

state and a modulated F� state. The main difference between
their results and ours appears to be that they find a stripe
phase rather than a helix for the phase with spins perpendicu-
lar to the applied magnetic field. They find arrays of elliptical
and hyperbolic Mermin-Ho vortices as a metastable dynami-
cal state between the stripes for the F� state for all q. How-
ever, they are smaller than the spin-healing length and hence
unobservable in our simulation although we do see them
close to the transition to the F� / P� state. The second, by
Kawaguchi et al., finds a doubly periodic �checkerboard�
spin pattern as a long-lived intermediate state through a com-
bination of mean-field theory and numerical simulation of
precession-averaged equations of motion. By adding energy
dissipation to the dynamics, they reach a stationary state
similar to ours.
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APPENDIX A: THE DIPOLE TERM

The dipolar energy of a magnetized fluid with magnetiza-
tion ℳ�x� is

�0

8�
� dxdx��ℳ · ℳ� − 3�ℳ · r̂��ℳ� · r̂�

r3 −
8�

3
M2��3��r�
 ,

where r=x−x� and ℳ�=ℳ�x��. The last term, or “s-wave”
part, contributes to the contact interaction c2 in the BEC
Hamiltonian and so should not be treated independently. In
this paper we take the first, “d-wave” part to be the full
dipolar interaction. This can, in turn, be decomposed into a
“Coulomb” part that is positive semidefinite and hence con-
venient for numerical work that searches for energy minima
and a contact part as in Eq. �13�.

For both analytical and numerical work we need the di-
mensionally reduced form of the Coulomb part expressed in
a rotating frame. Ignoring the contact term in Hdip and per-
forming two partial integrations we find

Edip
C =

cd

2
� d3xd3x�

� · 
n3DM�x���� · 
n3DM�x���
	x − x�	

=
cd

2
� d2xd2x���x,z����x�,z��� dydy�

��y���y��
	x − x�	

+
cd

2
� d2xd2x�n2DMy�x,z�n2DMy�x�,z��

�� dydy�

�y��y��
�y���y���

	x − x�	
�A1�

where ��x ,z���x
n2DMx�x ,z��+�z
n2DMz�x ,z�� is an effec-
tive surface-charge density. The density n2D has only a �x ,z�
dependence for a nonzero trapping potential U�x ,z�. The in-
tegrals over y can be performed explicitly for either Gaussian
or boxcar profiles �; we choose the Gaussian form for the
purposes of numerics. Then

��y���y�� =
2

��y
2e−�y+

2+y−
2�/�y

2
,


�y��y��
�y���y��� =
8�y+

2 − y−
2�

��y
6 e−�y+

2+y−
2�/�y

2
�A2�

with y�=y�y�. The integrals over y+ are simple and the
integrals over y− can be put in terms of special functions with

help of the identities �dx e−x2

�c2+x2 =ec2/2K0� c2

2 � and �dx x2e−x2

�c2+x2

=
��
2 U� 1

2 ,0 ,c2�. Here K0 is a modified Bessel function and U
is a confluent hypergeometric function.

For the numerics, discretize the remaining integrals as
follows. Divide the two-dimensional area into rectangular
plaquettes and set the density n2D and magnetization M con-
stant on each plaquette

M�x,z� → M�a�r +
1

2
�,a�s +

1

2
�
 , �A3�

where a is the lattice constant and r ,s are integers. Then do
several variable substitutions. Going to variables x� and z�

and scaling the coordinates by a allows us to replace
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� d2xd2x� → �
p−1

p+1

dx−�
q−1

q+1

dz−�1 − 	x− − p	��1 − 	z− − q	�

�A4�

since the integrands depend only on x− ,z−. Here p=r�−r and
q=s�−s.

The integrals can then be computed numerically for 0
� p ,q��N. The final step is to time average the fields to
take into account the rapid Larmor precession. This effec-
tively means replacing

��p,q���p�,q�� → �z
n2DMz�p,q���z�
n2DMz�p�,q���

+
1

2
�x
n2DMx�p,q���x�
n2DMx�p�,q���

+
1

2
�x
n2DMy�p,q���x�
n2DMy�p�,q���

�A5�

and

My�p,q�My�p�,q�� →
1

2
Mx�p,q�Mx�p�,q��

+
1

2
My�p,q�My�p�,q�� �A6�

in Eq. �A1� since the transverse components rotate into each
other but the longitudinal component is unaffected.

APPENDIX B: HELICAL MODULATION

We can obtain a simple estimate of the wavelength of the
transverse helical state to leading order in the strength of the
dipole coupling by assuming a fully polarized time evolving
state ��

F �0,kzz−�B0t�, Eq. �7�, with magnetization

Mx + iMy = n2D��y�ei�kzz−�B0t�. �B1�

Fourier transforming the kinetic and the dipole energy
term, keeping only contributions that scale with the area of
the two-dimensional system, the �areal� energy density of
this state is

energy

area
= n2D

�2

2m

kz
2

2
+

cd

2

n2D
2

2
� dky

2�

4�

ky
2 + kz

2ky
2	�̃�ky�	2

�B2�

plus kz-independent terms. In the kinetic term, there is a fac-
tor of 1/2 because only half the atoms are in the mz= �1
states that carry kinetic energy. In the dipole term, the only
extensive contribution to the energy comes from the out-of-
plane component My, which gives a factor 1/2 there as well.
Notice also that the time dependence is gone. With ky

2 / �ky
2

+kz
2�=1−kz

2 / �ky
2+kz

2�, the relevant terms are

n2D
�2

2m

kz
2

2
−

cd

2

n2D
2

2
	kz	� du

2�

4�

1 + u2 	�̃�	kz	u�	2 �B3�

and to lowest order in kz we just need �̃�0�=�dy��y�=1 to
arrive at

n2D
�2

2m

kz
2

2
− �

cd

2
n2D

2 	kz	 , �B4�

which takes its minimum at

kz = �
�

2

n2Dcd

�2/2m
. �B5�

APPENDIX C: DIPOLE ENERGY AT UNIFORM
MAGNETIZATION

For a uniform condensate with maximal magnetization,
aligned parallel to the magnetic field, the only contribution to
the dipole energy comes from the edges at z= �L /2. The
second term in Eq. �A1� does not contribute and only the
edges of the first

Edip
C =

cdn2D
2

2
�

−W/2

W/2

dxdx��
−�

�

dydy���y���y��

� 2� 1

�x−
2 + y−

2
−

1

�x−
2 + y−

2 + L2
 . �C1�

In the limit L�W�T, the leading contribution to the en-
ergy comes solely from the first term, which describes the
self-energy of two quasi-one-dimensional lines of charge. In-
deed, it becomes just

Edip
C = 2cdn2D

2 �W

dx−�W − x−�/x− = 2cdn2D
2 W ln W/T + O�W�

�C2�

asymptotically, where the lower cutoff T has been chosen for
convenience.

The energy for the uniform out-of-plane configuration is

Edip
C =

cd

2
n2D

2 � d3xd3x�

�y��y��
�y���y���

	x − x�	
. �C3�

Since there will be a term extensive in the planar size, it is
simplest to ignore the effects of boundaries and work with a
surface energy density

� =
cd

2
n2D

2 2�� dydy��
0

R

dr
r
�y��y��
�y���y���

�r2 + y−
2

= 2�cdn2D
2 � dydy���y���y����y − y�� + O�1/R�

= 2�cdn2D
2 1

T
�C4�

after integrating over the radial coordinate r followed by
partial integration in y and y�.
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