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The topological insulator is an electronic phase stabilized by spin-orbit coupling that supports propagating
edge states and is not adiabatically connected to the ordinary insulator. In several ways it is a spin-orbit-
induced analog in time-reversal-invariant systems of the integer quantum Hall effect �IQHE�. This paper
studies the topological insulator phase in disordered two-dimensional systems, using a model graphene Hamil-
tonian introduced by Kane and Mele �Phys. Rev. Lett. 95, 226801 �2005�� as an example. The nonperturbative
definition of a topological insulator given here is distinct from previous efforts in that it involves boundary
phase twists that couple only to charge, does not refer to edge states, and can be measured by pumping cycles
of ordinary charge. In this definition, the phase of a Slater determinant of electronic states is determined by a
Chern parity analogous to Chern number in the IQHE case. Numerically, we find, in agreement with recent
network model studies, that the direct transition between ordinary and topological insulators that occurs in
band structures is a consequence of the perfect crystalline lattice. Generically, these two phases are separated
by a metallic phase, which is allowed in two dimensions when spin-orbit coupling is present. The same
approach can be used to study three-dimensional topological insulators.
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I. INTRODUCTION

Considerable theoretical and experimental effort has been
devoted to the quest for an intrinsic spin Hall effect1–4 that
would allow generation of spin currents by an applied elec-
tric field. Interesting mechanisms for such spin current gen-
eration make use of spin-orbit coupling, which breaks the
SU�2� spin symmetry of free electrons but not time-reversal
symmetry. A dissipationless type of intrinsic spin Hall effect
was predicted5,6 to arise in materials that have an electronic
energy gap. This “quantum spin Hall effect” �QSHE� in cer-
tain materials with time-reversal symmetry has a subtle rela-
tionship to the integer quantum Hall effect, in which time-
reversal symmetry is explicitly broken by a magnetic field.

In a system with unbroken time-reversal symmetry, a dis-
sipationless charge current is forbidden, but a dissipationless
transverse spin current is allowed, of the form

J j
i = ��ijkEk. �1�

The current on the left is a spin current and � is the fully
antisymmetric tensor. Note that a spin current requires two
indices, one for the direction of the current and one for the
direction of angular momentum that is transported. The con-
stant of proportionality � depends on the specific mecha-
nism: for example, the �dissipative� extrinsic D’yakonov-
Perel mechanism7 predicts a small � that depends on
impurity concentration. The QSHE builds on the construc-
tion by Haldane8 of a lattice “Chern insulator” model, with
broken time-reversal symmetry but without net magnetic
flux, that shows a �=1 integer quantum Hall effect �IQHE�.
The simplest example of a QSHE is obtained by taking two
copies of Haldane’s model, one for spin-up electrons along
some axis and one for spin-down electrons. Time-reversal
symmetry can be maintained if the effective IQHE magnetic
fields are opposite for the two spin components. Then an
applied electric field generates a transverse current in one

direction for spin-up electrons, and in the opposite direction
for spin-down electrons. There is no net charge current, con-
sistent with time-reversal symmetry, but there is a net spin
current. However, models like this in which one component
of spin is perfectly conserved are both unphysical, since re-
alistic spin-orbit coupling does not conserve any component,
and not very novel, since for each spin component the phys-
ics is exactly the same as Haldane’s model and the spin com-
ponents do not mix.

More subtle physics emerges when one asks how the
QSHE appears in more realistic band structures. Remarkably,
band insulators of noninteracting two-dimensional electrons
with spin-orbit coupling divide into two classes: the “ordi-
nary insulator,” which, in general, has no propagating edge
modes and no spin Hall effect, and the “topological insula-
tor,” which has stable propagating edge modes and a generic
spin Hall effect, although the amount of spin transported �the
coefficient � in Eq. �1�� is nonuniversal. These phases are
associated with a Z2-valued topological invariant �an “odd-
ness” or “evenness” in the language of parity41� in the same
way that IQHE phases are associated with an integer-valued
topological invariant. For explicitness, consider the model of
graphene introduced by Kane and Mele.5 This is a tight-
binding model for independent electrons on the honeycomb
lattice �Fig. 1�. The spin-independent part of the Hamiltonian
consists of a nearest-neighbor hopping, which alone would
give a semimetallic spectrum with Dirac nodes at certain
points in the two-dimensional �2D� Brillouin zone, plus a
staggered sublattice potential whose effect is to introduce a
gap:

H0 = t �
�ij��

ci�
† cj� + ���

i�

�ici�
† ci�. �2�

Here, �ij� denotes nearest-neighbor pairs of sites, � is a spin
index, �i alternates sign between sublattices of the honey-
comb, and t and �v are parameters.
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The insulator created by increasing �v is an unremarkable
band insulator. However, the symmetries of graphene also
permit an “intrinsic” spin-orbit �SO� coupling of the form

HSO = i�SO �
��ij���1�2

�ijci�1

† s�1�2

z cj�2
. �3�

Here, �ij = �2/�3�d̂1	 d̂2= ±1, where i and j are next-nearest

neighbors, and d̂1 and d̂2 are unit vectors along the two bonds
that connect i to j. Including this type of spin-orbit coupling
alone would not be a realistic model. For example, the
Hamiltonian H0+HSO conserves sz, the distinguished compo-
nent of electron spin, and reduces for fixed spin �up or down�
to Haldane’s model.8 Generic spin-orbit coupling in solids
should not conserve any component of electron spin. How-
ever, the unusual phase generated when HSO is strong turns
out to survive, with subtle changes, once the spin-orbit cou-
pling is made more realistic, as we now review.

The topological insulator phase created when 	�SO 	

 	�v	 is quite different from the ordinary insulator that ap-
pears when 	�v 	 
 	�SO	 �here, we assume that there is an
energy gap between the lower and upper band pairs in which
the Fermi level lies�. The former has counterpropagating
edge modes and shows the QSHE, while the latter does not.5

Does this phase exist for more realistic spin-orbit coupling?
The spin component sz is no longer a good quantum number
when the Rashba spin-orbit coupling is added:

HR = i�R �
�ij��1�2

ci�1

† �s�1�2
	 d̂ij�zcj�2

, �4�

with dij the vector from i to j, and d̂ij the corresponding unit
vector. Note that Rashba spin-orbit coupling is not intrinsic
to graphene but generated by inversion-symmetry breaking
in the out-of-plane direction.9 The Rashba coupling is a stan-
dard form that is believed to be a reasonable model for the
dominant spin-orbit coupling in adsorbed graphene.

The topological insulator survives but is strongly modi-
fied in the presence of the Rashba term. For a general 2D
band structure with sz conserved, there are many phases la-
beled by an integer n, as in the IQHE: if spin-up electrons are
in the �=n state, then spin-down electrons must be in the �
=−n state by time-reversal symmetry, where the sign indi-
cates that the direction of the effective magnetic field is re-
versed. Once sz is not conserved, as when �R�0, there are

only two insulating phases, the ordinary and topological in-
sulators. A heuristic definition of the topological insulator,
without reference to any particular spin component or the
spin Hall effect, is as a band insulator that is required to have
gapless propagating edge modes at the sample boundaries.
The decoupled �= ±n cases with sz conserved are adiabati-
cally connected, once sz is not conserved, to the ordinary
insulator for even n and to the topological insulator for odd
n. A review of how these two cases emerge as the only pos-
sibilities in 2D follows in Sec. II.

It should be clarified that the intrinsic spin-orbit coupling
is now believed to be quite weak in graphene,10–12 so that the
topological insulator is unlikely to be realized. However, the
same topological insulator phase is now believed to exist for
realistic spin-orbit coupling in other materials such as
HgTe.13 We choose to study the graphene model introduced
by Kane and Mele because it is the first and simplest model
showing a transition between ordinary and topological insu-
lators. It is the simplest possible model in that it has four
spin-split bands, which is the minimum number required for
the nontrivial phase to exist.14 For this reason, it has received
the most attention in the other studies15,16 to which our re-
sults will be compared. It is straightforward to generalize the
approach presented here for the graphene model to another
material with more complicated spin-orbit coupling, and the
same qualitative results are expected to apply.

It is not obvious at first glance how to generalize the
topological insulator phase to finite, noncrystalline systems,
rather than band structures, as when the parameters of the
Hamiltonian H=H0+HSO+HR are drawn from a random dis-
tribution. The first approach was in terms of a spin Chern
number15 similar to the Chern integer in finite IQHE sys-
tems, but there is now agreement that for a clean band struc-
ture the only invariants are of Z2 type, rather than integer
type.14,17,18 Two equivalent definitions of the appropriate Z2
invariant for a finite disordered system, in the simple case
when the disorder splits all degeneracies other than Kramers
degeneracies, are as follows �the full definition is given and
compared to previous work in the following section�. The
finite system can be considered as a unit “supercell” of a
large 2D lattice. A large, finite supercell gives many bands,
but each pair of bands connected by time reversal �Kramers
pair� can be assigned its own Z2 invariant.14 The phase of the
supercell system, if the Fermi level lies in a gap, is then
identified by adding up all the invariants �mod 2�. Alter-
nately, a direct definition of the phase in the finite system can
be given that is related to the notion of “Z2 pumping.”17 Real
charge is pumped as the flux through the system is taken
from 0 to hc /2e �half the usual flux quantum that appears in
IQHE pumping�; we show that in the topological insulator,
any pumping cycle, properly defined, pumps an odd number
of electron charges, while for the ordinary insulator, any
cycle pumps an even number of charges.

We implement this definition numerically using an ex-
plicit algorithm introduced by Fukui and Hatsugai19 for com-
puting Z2 topological invariants on a Brillouin zone. The
topological insulator phase is robust to disorder: while dif-
ferent realizations of disorder assign different “Chern pari-
ties” to individual subbands, it is found that the total for
occupied subbands is always “odd” for a wide range of pa-

Ly

Lx

d1
d2

ψeiφx

ψeiφx+iφyψeiφy

ψ

FIG. 1. �Color online� The honeycomb lattice on which the
tight-binding Hamiltonian resides. For the two sites depicted, the
factor �ij of Eq. �3� is �ij =−1. The phases �x,y describe twisted
boundary conditions, introduced in Eq. �10�.

ANDREW M. ESSIN AND J. E. MOORE PHYSICAL REVIEW B 76, 165307 �2007�

165307-2



rameters, which in our definition indicates a topological in-
sulator. In the IQHE, a pair of bands of opposite Chern num-
bers can annihilate as the strength of disorder is increased; in
the QSHE, two band pairs that both have odd Chern parity
can annihilate, i.e., become two even-parity band pairs. If the
topological insulator can be destroyed by band annihilation,
then there are extended �i.e., topologically nontrivial� states
with an arbitrarily small gap; it may be the case that for some
range of parameters, there are extended states at the Fermi
level even in the thermodynamic limit, indicating a metallic
phase.

In the IQHE, there is only a single energy with extended
states rather than a range of energies, and hence, no metallic
phase. We find the phase diagram of the graphene model
with on-site disorder, and in the presence of nonzero Rashba
coupling, find evidence for a metallic phase intervening be-
tween ordinary and topological insulators. The existence of
the metallic phase can be understood from work on 2D lo-
calization in the symplectic universality class,20 in which
time-reversal symmetry is unbroken but spin-orbit coupling
is present. It is found that extended states can be stable
against this disorder over a nonzero range in energy, unlike
in the orthogonal class, in which there are no extended states,
or in the unitary �integer quantum hall� class, in which there
are extended states only at isolated energies. The result of a
metallic phase can be understood as indicating that, although
the Z2 topological invariant allows one to distinguish two
kinds of insulators when the Fermi level has no extended
states, this invariant does not modify the standard picture of
bands of extended states in the symplectic universality class.

Recent work by Obuse et al.21 obtains a phase diagram
and critical exponents using a network model for the spin
quantum Hall effect that is similar to the Chalker-
Coddington network model22 for the IQHE �see also Onoda
et al.16 for a quasi-one-dimensional study of localization in
the Kane-Mele Hamiltonian with disorder�. Our results on
the phase diagram are consistent with these works, although
our method is unable to generate large enough system sizes
to confirm the exponents found for the phase transitions. To
understand how the network and Chern-parity approaches
complement each other, consider the IQHE: while the phe-
nomenological network approach to the IQHE is valuable
both to find the critical indices precisely and to identify the
minimal necessary elements of a theory for the transition,
Chern-number studies remain important for studies of effects
such as the floating of extended states,23–25 where knowledge
of the topological properties of a state is required. The net-
work model gives more accurate information about the phase
transitions but, if only the localization length is probed, does
not distinguish the different phases in bulk. A more technical
difference between the two approaches is discussed at the
end of Sec. II.

Section II reviews how the topological insulator phase in
perfect crystals arises from a parity-valued topological in-
variant of the band structure, similar to the Thouless–
Kohmoto–Nightingale–den Nijs26 �TKNN� integers in the
IQHE. It then gives two mathematically equivalent defini-
tions of the topological insulator phase in disordered systems
based on Chern parity. One definition simply considers a
finite disordered system as a supercell of an infinite lattice

system, while the other is based on closed charge pumping
cycles driven by the application of flux to a finite periodic
system. Section III reviews the Fukui-Hatsugai algorithm19

adapted to the numerical computation of these invariants in
disordered systems, then computes the phase diagram of the
Kane-Mele graphene model5 with on-site disorder. The con-
clusions of our study for general 2D disordered systems are
summarized in Sec. IV. While there is a three-dimensional
version of the QSHE14,27–29 that is less directly connected to
the IQHE and has interesting localization behavior, we will
restrict our attention to two dimensions except for some
comments in the final section.

II. CHERN PARITIES FOR DISORDERED
NONINTERACTING ELECTRON SYSTEMS

A. Definition of the Z2 invariant in clean systems

We review one definition of the Z2 invariant of a band pair
in a 2D band structure, then explain its generalization to
noncrystalline systems. With the Hamiltonian

H = H0 + HSO + HR �5�

defined in Eqs. �2�–�4�, or any periodic, single-electron
Hamiltonian, a Berry connection A can be defined on the
Brillouin zone �BZ� from the periodic part u�k� of a Bloch
state �k=u�k�eik·r. For a single nondegenerate band j,
A j�k�=−i�uj	�k	uj�. This Berry connection serves as a
potential for the Berry field strength F= ��k	A�z, which,
when integrated over the BZ, returns an integer, called a
TKNN integer in the context of the IQHE:26

nj = −
1

2



BZ

F jd
2k

=
i

2



BZ
�� �u

�kx
 �u

�ky
� − � �u

�ky
 �u

�kx
��d2k . �6�

When bands touch, only the total TKNN integer of the
bands is well defined,30 in which case it makes sense to
generalize A as

A j = − i��uj1	�k	uj1� + �uj2	�k	uj2�� = − i tr u j
†�ku j �7�

for the degenerate Bloch functions uj1 and uj2. In the second
equation, u j = �uj1 ,uj2�, where the Bloch functions are
viewed as column vectors, i.e., u j is a matrix. This compact
notation follows Fukui and Hatsugai.18 This generalization is
always needed in the case of a time-reversal-invariant system
with half-odd integer spin, or fermionic statistics, because
such a system has “Kramers degeneracies” at certain time-
reversal-invariant momenta �see, for example, Ref. 31�.
Briefly, time-reversal invariance requires that

�H�− k��−1 = H�k� , �8�

where H�k� is the Bloch Hamiltonian and �=−i�yK is the
action of time reversal �K performs complex conjugation and
�y, the usual Pauli matrix, acts on spin indices�. At momenta
for which −k=k, H�k� commutes with �, but there are no
single-electron eigenstates of � �time reversal will always
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flip the spin�, so there must be a degenerate pair of energy
eigenstates at each such momentum. Once we take these de-
generacies into account, however, the TKNN integers for the
band pairs vanish in a time-reversal-invariant band structure
�see, e.g., Ref. 14�. Instead there is a Z2 invariant associated
with a band pair in a time-reversal-invariant 2D Fermi
system.6

Fu and Kane17 give the following formula for the Z2 to-
pological invariant in terms of the Bloch functions of the
clean system:

D =
1

2����EBZ�
dk · A − 


EBZ

d2kF� mod 2. �9�

The notation EBZ stands for effective Brillouin zone,14

which describes one-half of the Brillouin zone together with
appropriate boundary conditions. Since the BZ is a torus, the
EBZ can be viewed as a cylinder, and its boundary ��EBZ�
as two circles, as in Fig. 2�b�. While F is gauge invariant, A
is not, and different �time-reversal invariant� gauges can
change the boundary integral by an even amount.

A proof of the existence and Z2 nature of the topological
invariant for multiple bands and some intuition for Eq. �9�
can be obtained14 by considering time-reversal-invariant
band structures as maps from the EBZ to the space of Bloch
Hamiltonians, following work on the IQHE by Avron et al.30

The Berry field strength can be written in terms of the �gauge
invariant� projection operator onto the band pair rather than
the �gauge dependent� wave functions. In this approach, the
ambiguity by an even integer that is crucial to obtain a Z2
rather than a Z invariant corresponds to the many different
ways in which the circles that form EBZ boundaries in Fig.
2�b� can be contracted to make the EBZ into a sphere. The
boundary integrals in Eq. �9� just calculate the contribution
to the Chern number from these “contractions.” On this
sphere, Chern integers are well defined for each nondegen-
erate band pair, but the different ways of contracting the
boundaries cause the resulting integers to differ by even
numbers. An explicit numerical implementation of the Fu-
Kane formula �9� was given by Fukui and Hatsugai19 and
will be reviewed in Sec. III.

What happens when disorder is added? We now explain
how the definition of the topological insulator generalizes to

disordered systems. Just as TKNN integers of a band struc-
ture give rise to Chern integers in a disordered system of
finite size, so do the Z2 invariants of band pairs become
Chern parities.

B. Topological insulator phase for Slater determinants
via Chern parity

The TKNN integers generalize in the presence of disorder
and interactions to the Chern number of the many-particle
wave function.32 A natural question is how disorder and in-
teractions modify the Z2 invariants of band pairs in spin-
orbit-coupled 2D band structures. All derivations of the Z2
invariants of clean systems depend on Fermi statistics in
some way: for example, the existence of Kramers degenera-
cies and the related fact that the time-reversal operator
squares to −1 both depend on Fermi statistics. A many-
fermion wave function describing an even number of fermi-
ons does not behave in the same way as single-fermion wave
functions under time reversal. Hence, given only the many-
fermion wave function, it does not seem likely that there is a
generalization of the Z2 invariant.

However, for the particular case of many-fermion wave
functions that are single Slater determinants of single-
particle wave functions, the invariant can be generalized as
we now show. While the assumption of a single Slater deter-
minant limits the treatment of interactions to the Hartree-
Fock level, there is no requirement that the wave functions in
the Slater determinant be Bloch states. As a result, the topo-
logical insulator and QSHE can be defined and studied for
any disorder strength.

Niu et al.32 and Avron and Seiler33 showed that for disor-
dered quantum Hall systems, there exists a generalization of
the TKNN invariant defined for clean systems.26 They intro-
duce generalized periodic boundary conditions and find an
invariant Chern number, similar in form to the TKNN invari-
ant, on the space of boundary phases. Consider a finite sys-
tem of noninteracting electrons with boundary conditions
that are periodic up to phases �x ,�y, as shown in Fig. 1: this
is equivalent to putting magnetic fluxes �x,y =�x,y�0 /2
through the two noncontractible circles on the torus ��0
=hc /e is the magnetic flux quantum�. As motivation, think of
the finite system as a �possibly very large� unit cell of a
lattice system. Then in order to determine the phase of this
lattice system, instead of integrating over k to do the inte-
grals in the Fu-Kane formula �9�, we integrate over the
boundary phases, which introduces offsets to the wave vec-
tors. We now carry out this procedure, show that it repro-
duces the band-structure result for clean systems, and then
discuss a physical picture and its relation to previous defini-
tions.

Consider the single-particle wave functions of a lattice
Hamiltonian such as the graphene model on a finite lattice of
size Lx	Ly �see Fig. 1�. Instead of the physical boundary
conditions ��x+Lx,y�=��x� for a single-particle wave func-
tion �, introduce the boundary phases, or “twists,” �
= ��x ,�y� via

��x + Lx� = ei�x��x�, ��x + Ly� = ei�y��x� . �10�

Then a unitary transformation of the form

C

Γ

B

A

Γ

B

A

C

(a) (b)

-π/a π/a-π/a

π/a

0

0

FIG. 2. �a� A two-dimensional Brillouin zone. Note that any
such Brillouin zone, including that for graphene, can be smoothly
deformed to a torus. The labeled points are time-reversal-invariant
momenta. �b� The effective Brillouin zone �EBZ�. The horizontal
lines on the boundary circles ��EBZ� connect time-reversal-
conjugate points, where the Hamiltonians are related by time rever-
sal and so cannot be specified independently.
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��x� = e−i��xx/Lx+�yy/Ly���x� �11�

will transfer the twist angles to the Hamiltonian. Under the
change of basis �11�, Kane and Mele’s model Hamiltonian5

H=H0+HSO+HR �see Sec. I� becomes �suppressing spinor
indices�

H → H��� = �
�ij�

ci
†�t + i�R�s 	 d̂ij�z�cje

−i�·dij

+ i�SO �
��ij��

�ijci
†szcje

−i�·dij + �
i

��v�i + wi�ci
†ci,

�12�

where �= ��x /Lx ,�y /Ly�, dij is still the vector i→ j, and we
have added a random term for on-site disorder, wi, drawn
from the Gaussian distribution of zero mean and standard
deviation �w. It is now clear that under time reversal,

�H�− ���−1 = H��� , �13�

since the extra phase factors in H change sign under com-
plex conjugation.42 Since this directly parallels Eq. �8�, the
Z2 invariant D of the Brillouin zone passes directly to twist
space:

D� =
1

2����ETZ�
d� · A − 


ETZ

d2�F� mod 2, �14�

with ETZ for effective twist zone, i.e., ETZ= �� 	0��x

� ,−��y ��. Note that there is an independent Chern
parity D� for each Kramers-degenerate band pair separated
from the rest of the spectrum by a gap at all �: for such an
isolated pair, A and F are defined as in Eq. �7� and after,
with k→� and u→�.

In order to make contact with the band-structure defini-
tion, we note that if there is no disorder in the Hamiltonian
�i.e., �w=0�, there are discrete translational symmetries
within the Lx	Ly supercell that induce additional non-
Kramers degeneracies at some points in twist space. With
such degeneracies, only the total Chern parity of all the de-
generate states is well defined. Disorder, as discussed in the
following section, breaks all degeneracies resulting from
translational invariance, leaving only separated band pairs,
each of which has its own Chern parity. We now discuss to
what extent Chern parities can be connected to observable
quantities in a finite system.

C. Charge pumping cycles in time-reversal-invariant systems

The total Chern number in a finite IQHE system can be
interpreted as measuring the number of charges pumped
when the flux through one noncontractible circle on the torus
increases adiabatically by one flux quantum. Briefly, one of
the boundary phases corresponds to this driving flux, and the
average over the other can be shown to yield the pumped
charge.34 The idea of Z2 pumping suggested by Fu and
Kane17 is the following: in a finite cylinder with boundaries,
the operation of increasing the phase �x �in the periodic di-
rection, around the cylinder� from 0 to , corresponding to a
magnetic flux of one-half flux quantum through the cylinder,

has the following effect in the topological insulator. The val-
ues �x=0 and �x= are special because, unlike general val-
ues, they are consistent with time-reversal invariance. At
these special fluxes, there are gapless states at the Fermi
level that are localized near the edges because of the bulk
gap. Fermi statistics requires that these states lie in Kramers
doublets. If at zero flux the Kramers doublet at one edge is
partially occupied �has one state occupied�, then the opera-
tion of changing the flux changes its occupancy to either
double or zero occupancy. Since total charge is conserved,
this requires a flow of Z2 from one boundary to the other: the
final state differs from the initial state.

We now give an alternate definition of the topological
insulator in term of cyclic pumping of ordinary charge. This
definition is mathematically equivalent to the definition of
Sec. II B based on treating the finite system as a supercell. In
order to describe a closed pumping cycle, we need to add a
second stage to the process of increasing boundary phase �x
from 0 to : although both these phases are consistent with
time-reversal invariance, physical properties, like the occu-
pancy of an edge doublet, are not identical at these different
values of �x �even at the same �y�. Hence, the charge
pumped in this process is not automatically well defined. The
only requirement on the second stage is essentially that it
return the system to its original state without applying a
time-reversal-breaking flux. While this definition precisely
reproduces the supercell definition above, it should be noted
that it is slightly different from pumping in the IQHE since,
in some cases, the second stage requires changing the sys-
tem’s Hamiltonian and not just the boundary phase.

Although the number of charges pumped is dependent not
only on the first stage but on the second stage as well,
whether this is an even or odd number is entirely determined
by the first stage, as we now show. A closed pumping cycle is
shown in Fig. 3. The original physical system’s ETZ is the
first stage of the cycle: the Hamiltonians are functions of �x
from 0 to  and �y from − to , with time-reversal con-
straints that act on the boundary circles at �x=0 and �x=.

Γ

B

A

C

A

C B

Stage I:
insert flux, breaking T

Γ

φx = 0 φx = π

Stage II:
complete the cycle

φy = 0

φy = π

FIG. 3. Graphical representation of charge pumping cycle for
Chern parities. The first stage takes place on the ETZ �as in Eq.
�14��, and the flux �x increases adiabatically from 0 to . In the
second stage, the Hamiltonian at ��x= ,�y� is adiabatically trans-
ported through the space of Hamiltonians to return to the Hamil-
tonian at ��x=0,�y�. The difference between the second stage and
the first is that at every step of the second stage, the Hamiltonians
obey the time-reversal conditions required at �x=0 or �x=. The
bold lines indicate paths along which all Hamiltonians are time-
reversal invariant, and the disk with horizontal lines indicates, as
before, how pairs of points in the second stage are related by time
reversal.

TOPOLOGICAL INSULATORS BEYOND THE BRILLOUIN… PHYSICAL REVIEW B 76, 165307 �2007�

165307-5



If �x takes one of these values, then the Hamiltonian at �y is
time-reversal conjugate to that at �y�=−�y. The second stage
can be any continuous change of the Hamiltonians that takes
the �x= system back to the �x=0 system and always sat-
isfies the conjugacy condition between �y and �y�. This is the
key difference between the second stage and the first stage:
for intermediate values 0��x�, there is no such conju-
gacy condition. The physical interpretation is that the second
stage should be possible without introducing flux through the
first noncontractible circle. The Fukui-Hatsugai algorithm18

reviewed in the following section can be used to “choose a
gauge.”

Now the torus shown in Fig. 3 has one Chern integer for
each isolated band pair. Summing over occupied bands gives
the amount of charge pumped in the cycle. Although this
integer charge depends on the second stage, its parity is
solely determined by the first stage, i.e., the physical system.
In particular, for the ordinary insulator, there is some closed
cycle that pumps zero charge, while for the topological insu-
lator, there is some closed cycle that pumps unit charge.
These results follow from the same proof as for the band-
structure case in Ref. 14: one shows that the differences in
resulting Chern integers between any two second stages are
even. The pumping definition gives a different physical pic-
ture for the contractions introduced there; instead of contract-
ing the EBZ to a sphere, here the ETZ is contracted to a torus
by adding the second stage. The technical reason that these
two constructions are equivalent is that, since the appropriate
spaces of Hamiltonians are contractible �i.e., have 1=0�,
the two closed manifolds, the torus and the sphere, both have
the same topological invariants, namely, integer-valued
Chern numbers.

The topological insulator in disordered systems has been
studied previously by locating the transition between topo-
logical and ordinary insulators as a point or region where the
localization length of single-electron eigenstates diverges.
The existence of the topological insulator is inferred from the
existence of this transition region �or, alternately, from the
edge states in the topological insulator phase�. In principle,
this approach could give a different result from ours, in that
our definition probes the existence not just of extended states
but specifically of extended states that contribute to the
pumping of charge or, alternately, that can give rise to edge
states. The same distinction arises in the quantum Hall effect,
where looking for extended states of nonzero Chern number
is a more direct probe of quantum Hall physics than consid-
ering the inverse participation ratio, for example, which
would detect extended states of zero Chern number in addi-
tion to topological states. However, as in the quantum Hall
case, we find that the phase boundaries from our Chern-
parity definition are consistent with those obtained from cal-
culations of the localization length.16,21

III. GRAPHENE MODEL AND NUMERICS

A. Phase diagram of the disordered graphene model

It is useful to review some general expectations before
applying the definitions of the previous section to study
a disordered version of the graphene model. In two-

dimensional systems with time-reversal invariance and no
spin-orbit coupling, even very weak disorder will localize
electron wave functions, so that these systems do not ever
conduct in the thermodynamic limit. In the presence of a
magnetic field, as in the IQHE, there are isolated energies
with extended states, but no finite-width range of energies
with extended states, and hence, no true metallic phase.
Hikami et al. showed20 that disordered two-dimensional sys-
tems with spin-orbit coupling can, nevertheless, support a
metallic phase, referred to as a “symplectic metal.” They
calculated ladder diagrams for the problem of random poten-
tial scattering in two dimensions in order to obtain a
renormalization-group equation for the resistance, and found
that, in the presence of strong spin-orbit scattering without
magnetic scattering �so that the system is time-reversal in-
variant�, the resistance flows to zero, indicating extended
states and a metallic phase. In the presence of strong mag-
netic scattering �i.e., the IQHE�, in contrast, the resistance
does not flow at that order, and at next order grows �see also
Ref. 35�.

In the case studied here, any metallic phase induced by
disorder would presumably appear in a region around the
parameter set that closes the �clean� gap, as depicted sche-
matically in Fig. 4. At �R=0, the z component of spin is a
good quantum number �sz commutes with H�, so the system
reduces to two copies of the Haldane model,8 which has a
quantum Hall plateau transition with no metallic phase.
Hence, when �R=0, there should be a direct transition be-
tween insulators even with disorder.

B. Lattice implementation

For numerical work, we use the algorithm of Fukui and
Hatsugai, which we review here.19 The formula �9� for D
requires a gauge choice for the Hamiltonian eigenstates at
each � on the two boundaries of the half-torus 0��x� ,
−��y �. That is, the “field strength” F is gauge invari-
ant, but the gauge potential A is not. The eigenstates form
Kramers pairs related by time reversal, and the gauge choice
must respect this constraint.

Now, at the time-reversal-invariant points �= �0,0�,
�0,�, � ,0�, and � ,�, the solid points in Fig. 5, the spec-
trum is degenerate, with two states at each energy. The gauge

Topological Insulator

Ordinary Insulator

λSO

λRλR

λv

Ordinary

Topological

a. b.

Topological Insulator

Metal

Ordinary Insulator

λSO

λR

c.

IQHEIQHE

Insulator

Insulator

FIG. 4. Schematic phase diagram. �a� Phase diagram for a clean
system, with fixed t and �SO�0 �after Kane and Mele �Ref. 6��. �b�
Again a clean system, now with fixed t and �v�0. �c� The expected
form of the phase diagram at nonzero disorder �we run all simula-
tions at fixed �v�. The phase boundary in �b� opens up into a me-
tallic phase, closing only when �R=0, where there should be an
IQHE transition.
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condition requires that � interchange the two with a phase
factor e±i/2 �so that �2=−1 as required for single-fermion
states�. Numerical diagonalization will not, in general, return
eigenvectors that obey this condition, but we can force them
to do so as follows: choosing one of the two members of
each Kramers pair at energy �2n−1=�2n and calling that vec-
tor �2n−1, we discard the other and replace it by

�2n = ��2n−1. �15�

On the rest of the boundary, eigenvectors can be chosen
freely on 0��y �. On −��y �0, the algorithm takes

�n�− �� = ��n��� . �16�

In summary, the algorithm leaves alone the results of numeri-
cal diagonalization at all the gray points in Fig. 5, and by
hand, enforces the gauge condition on the rest of ��ETZ�.43

With the eigenstates fixed at each point on the ETZ, we
follow Fukui and Hatsugai, and construct U�1� parallel trans-
porters on the links as

Ux��� =
gx

	gx	
, gx = det �†������ + x̂� , �17�

and Uy similarly. Like u in Eq. �7�, � is a matrix built from
occupied state vectors, and x̂ translates by one link in the �x
direction. In the continuum limit, g should approach a pure
phase, but for nonzero lattice spacing it will, in general, have
	g	�1, since the occupied subspace of interest will not em-
bed in the total Hilbert space in the same way at every lattice
point.

In the end, the only retained information will be the varia-
tion of the relative phases �hence the definition of U�, which
can be captured by choosing a lattice constant so small that
the phase field varies slowly over one link. However, the
scale of variation will presumably differ for different disor-
der realizations, and we would like a way to diagnose this
and throw out those realizations for which fast variation
makes the calculation unreliable. The phase is periodic, and

if it were to wind through 2 over the distance of one link,
the algorithm would miss this fact, so the relative phase will
not provide a good diagnostic. As a proxy, we choose to cull
disorder realizations that result in small determinants in most
simulations, since a small overlap between adjacent occupied
eigenspaces indicates rapid variation. Of course, this filtering
could introduce a selection bias into the results; these effects
are within the statistical uncertainty of our analysis �in par-
ticular, within the error bars of Fig. 9�.

Associated with the transporter on each link is a gauge
potential Ax,y =log Ux,y. This A is imaginary, and the loga-
rithm is defined to return the branch A / i� �− ,�. Associ-
ated with the transport around each plaquette is a flux

F��� = log Ux���Uy�� + x̂�Ux
−1�� + ŷ�Uy

−1��� , �18�

again satisfying F / i� �− ,�. With these definitions in
hand, the lattice Z2 invariant corresponding to D� �14� is

DL =
1

2i� �
	���ETZ�

Ay − �
��ETZ

F� mod 2. �19�

Of course, the sum over the boundary should have the same
orientation as the corresponding contour integral in Eq. �14�;
in Fig. 5, this means the sum on the left boundary should
carry a minus sign, following the arrows. As mentioned pre-
viously, this formalism has the desirable property of guaran-
teeing that DL=0 or 1, but using too coarse a mesh can return
the wrong value.

C. Numerical results

As noted after Eq. �14�, the number of nondegenerate
Kramers pairs in a disordered system will generically be ex-
tensive, and we can use Eq. �19� to calculate the Chern parity
of each pair separately. Figure 6 shows the results of such
calculations on a 4	6 lattice to present a picture of the three
phases: normal insulator, symplectic metal, and topological
insulator. In all phases, there are Kramers pairs with D�=1
in the lower half of the energy spectrum, as indicated by the
bars. However, in the normal insulator ��SO well below the
transition�, there are an even number of such pairs in the
occupied half of all realizations, so that the overall Chern
parity is even. The presence of a very small number of real-
izations �2 of 215 for a 6	8 lattice� with odd parity indi-
cates either the tail of the disorder-broadened transition or,
more likely, that the weak filter applied for these simulations
failed to catch all realizations with rapidly varying link vari-
ables.

When �SO is large, almost all realizations have an odd
number of Z2-odd Kramers pairs �as with the small-�SO case,
two realizations do not follow the rule�, and in the region
near the transition of the clean system, there are instances of
both types. The presence of disorder causes the “gap” to
close at different values of �SO for different realizations, and
also at different energies. The latter fact means that extended
states are present throughout a finite spread of energies,
while the former means that the metallic state exists over a
finite region of parameter space.

For an integer quantum Hall system, Yang and Bhatt25

have shown how to extract the localization length exponent �

π

π

−π φx

φy

ETZ{

FIG. 5. Twist space. The bold lines indicate the boundaries of
the “effective twist zone,” the region we integrate �or sum� over to
calculate the Chern parity. The arrows indicate the direction to per-
form the sum over the boundary terms, and the lattice sites in gray
indicate those for which the Hamiltonian eigenvectors are indepen-
dently specified. That is, time-reversal symmetry determines the
eigenvectors on the white sites once those at the gray sites are
found.
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from such calculations, in their case the Chern numbers of
Landau sublevels. Specifically, sublevels with nonzero Chern
number contain extended states, which should only occur at
isolated energies in the IQHE. Therefore, the number Nc of
such sublevels should decrease as the system size Ns in-
creases, and, in fact, �Nc��Ns

1−1/2�, where � � indicates an
average over disorder realizations. A similar approach for the
quantum spin Hall �QSH� system here should reveal �ND�
�Ns, where ND is the number of Z2-odd Kramers pairs, since
we expect a stable metallic band of energies in the thermo-
dynamic limit �as observed by Obuse et al.21 and Onoda et
al.16�. With enough data and large enough systems, finite-
size-induced broadening of the edges of this band should
also make � accessible via a subleading term in the scaling.
We find that larger system sizes require a finer mesh in twist
space for these Kramers-pair-resolved simulations to return
stable results, so that the requirements quickly outstrip our
resources. Nevertheless, comparison of the two rows in Fig.
6 indicates that the location of the mean roughly doubles.
This is what would be expected for the middle case given the
above considerations; the mean for the topological insulator
�the right-hand panels in Fig. 6� should grow more slowly, as
in the case studied by Yang and Bhatt.

The total phase of the system, given by the total Chern
parity, is more relevant to possible measurements than the
Chern parity of each Kramers pair. The former maintains its
meaning if we consider the ground state wave function of the
many-electron system, formed as a Slater determinant of the
single-electron states we use here. There is also a computa-
tional benefit to calculating D� for the whole occupied sub-
space rather than for individual pairs—at larger system sizes,
and also at stronger disorder, the link variables for the half-

filled subspace vary much more slowly than those for the
individual Kramers pairs, making the calculation more ro-
bust. For these reasons, the remaining plots in this paper
depict only the Chern parity of the half-filled system.

To show that a metallic region of nonzero extent in pa-
rameter space exists in the thermodynamic limit, we need to
verify that the mixed-phase region does not shrink to zero as
we increase the system size. Figure 7�a� shows that as we
make the system larger, the transition region certainly does
not get narrower, and, in fact, the largest system size seems
to have the broadest transition.

We can quantify the scaling of the metallic region’s width
with system size by assuming a simple one-parameter scal-
ing form for the curves in Fig. 7�a� and defining the width of
the curve to be proportional to the reciprocal of the maxi-
mum slope: width �1/slope. With sufficient data, one could
expand the approximately linear region near the middle of
the transition in a power series with a few coefficients as fit
parameters. Since our simulation data are limited, we opt
instead to assume the form �tanh ��s�+1� /2, which has
roughly the right shape. If �=m��SO−�SO

* �, then m is exactly
the maximum slope we want. Figure 7�b� plots the data ver-
sus the best-fit scaling variable � for each system size; the
points appear to fill out a smooth curve, justifying the scaling
hypothesis. The best fit for m and �SO

* is determined by mini-
mizing a weighted �2 statistic.36 In particular, we assume that
the results �DL= ±1� of independent simulations at a fixed
parameter set are distributed binomially, and that for each

0 2 4 6 8 10 12 14 16

0.1

0.2

0.3

0.4

0.5

λSO = 0.32

0 2 4 6 8 10 12 14 16

# even
# odd

λSO = 0.40

0 2 4 6 8 10 12 14 16

24
sites

λSO = 0.48

0 2 4 6 8 10 12 14 16

48
sites

0 2 4 6 8 10 12 14 16

#

0 2 4 6 8 10 12 14 16
0

0.1

0.2

0.3

0.4

fr
ac

tio
n

of
re

al
iz

at
io

ns
w

ith
#

Z
2-o

dd
ba

nd
pa

ir
s

FIG. 6. Distribution of Chern parities for band pairs. The bar
heights represent the fraction of disorder realizations �out of �200
trials� that have a given number �#� of band pairs with DL=1 in the
occupied �half-filled� subspace. Those with an even number �#� will
have an overall DL=0, those with an odd number will have overall
DL=1. All these simulations were done with t=−1, �R=�v=1, and
�w=0.3. Reading across, �SO increases and the system transitions
from all realizations having even parity at small �SO to odd parity at
large �SO. Reading down, doubling the system size doubles the total
number of Kramers pairs and roughly doubles the number of Z2-odd
pairs.

0.2 0.3 0.4 0.5
λSO

0.2

0.4

0.6

0.8

1

fr
ac

tio
n

of
re

al
iz

at
io

ns
w

ith
D

L
=

1

16 sites
24 sites
36 sites
48 sites
64 sites
16 sites (fit)

64 sites (fit)

-4 -2 0 2 4
α

0.5

1

fr
ac

tio
n

of
re

al
iz

at
io

ns
w

ith
D

L
=

1

16 sites
24 sites
36 sites
48 sites
64 sites

b.

a.

FIG. 7. �Color online� �a� At finite �R, the “metallic” region
persists as the system size grows, and even broadens in the case
shown here �t=−1, �R=�v=�w=1�. We identify the metallic region
as those values of �SO for which some, but not all, disorder realiza-
tions have DL=1. As explained in the text, the fits to the simulation
data have the form �tanh �+1� /2, with �=m��SO−�SO

* �. �b� The
scaling collapse of the data in �a�, based on the best fit m and �SO

*

for each system size. The error bars represent 95% confidence in-
tervals assuming a binomial distribution of outcomes for each �SO.
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system size there are the same number of trials at each value
of �SO �which is roughly true�. In that case, the variance of
the distribution can be estimated as �2� p�1− p�,37 where p
is the fraction of disorder realizations returning DL=1, and
then 1/�2 is an appropriate weight for the statistical test. The
error bars in Figs. 7 and 8 are also assigned based on a
binomial model of the data.36

By contrast, at �R=0, the Hamiltonian �5� reduces to two
copies of the Haldane model and so should exhibit the quan-
tum Hall plateau transition, which looks like a step function
at zero temperature in the thermodynamic limit. In Fig. 8�a�,
the width of the transition region shrinks as the system size
grows, consistent with the prediction.

More quantitatively, Pruisken38 has shown in a
renormalization-group framework that the functional form of
the crossover for the IQHE looks like

p�L,B� = f���, � � L1/��B − B*� , �20�

where L is the linear size of the finite sample, B is the ap-
plied magnetic field, and � is again the localization length
exponent. The function p could be either the longitudinal
or transverse conductivity in the IQHE. Therefore,
p�� ,B*±��= f�±��, i.e., the transition is sharp in the thermo-
dynamic limit. In our system, the analogous parameter to B
is �SO: in the Haldane model, the spin-orbit coupling breaks
time-reversal invariance locally, like B does in the IQHE.
The width of the transition region in B is governed by the
way the Landau level energies respond to changing B, and
the width of the transition region in our model �for fixed �v�
is determined by the response of the gap to changing �SO.
Since both responses are linear, we expect that the appropri-
ate scaling variable will be ��L1/���SO−�SO

* �.

This form would allow us to extract the exponent � from
the scaling of the maximum slope with system size for large
systems �there are corrections at small system sizes�. Again
making the fit to a tanh described above, Fig. 8�b� shows the
scaling form, and Fig. 9 shows the scaling of width with
linear system size. In particular, a regression gives 1/�
=0.78±0.03, to be compared with the accepted value of
1 /��0.42. That is far from good agreement, but the ob-
served scaling should not be taken as implying a new uni-
versality class. �For reference, the network-model work by
Obuse et al.21 found 1/��0.37, and Onoda et al.16 recently
found a value 1/��0.63.� First, there should be finite-size
corrections to the simple scaling assumed for the small sys-
tems considered here. Second, the scaling form is, in prin-
ciple, different for different geometries, and the simulations
were done for systems of varying aspect ratio �1–1.5�. Nev-
ertheless, it is clear that the qualitative behavior at �R=0 is
as expected, showing no metallic phase, and the behavior at
�R=1 is consistent with the presence of a metallic region.

Finally, by varying �R and noting the �SO values that mark
the edges of the transition region for each �R, we can map
out the phase diagram of the Hamiltonian �5� on a system of
fixed size, as in Fig. 10. The widths obtained this way are in
rough agreement with the scaling analysis outlined above,
which returns the behavior of the width and not its normal-
ization. As the finite-size scaling results in Figs. 7 and 8
show, this phase diagram overestimates the width of the me-
tallic phase at �R=0, which is really zero. Together, these
simulations confirm the expectation of Fig. 4 within the ac-
curacy of our computational methods.

The same numerical methods could be used to study dif-
ferent forms of spin-orbit coupling quantitatively. The phase
diagram of the model we have studied is reasonably simple
in that, when the spin-independent part of the Hamiltonian is
fixed and the spin-orbit couplings are not too strong, the
intrinsic SO coupling pushes the system toward the topologi-
cal insulator, and the Rashba coupling pushes the system
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toward the ordinary insulator. For more complicated forms of
the spin-orbit coupling, the same analysis could be carried
out to find the phase diagram, but it is not always possible to
parametrize spin-orbit coupling with two parameters as for
the graphene model. Also note that in an experiment, modi-
fying the system using a perturbation such as a gate voltage
is likely to modify both the spin-orbit and spin-independent
parts of the Hamiltonian, so that a purely spin-orbit phase
diagram would be insufficient. However, an important and
potentially universal feature of the graphene phase diagram
is that, unless there is an extra conservation law such as the
sz conservation when Rashba coupling is absent, a metallic
region always appears between ordinary and topological in-
sulators in the presence of disorder. The existence of this
metallic region is an important difference between the spin
Hall effect and the integer quantum Hall effect.

IV. SUMMARY

Previous work5,6,14,17,39 defined a Z2 topological invariant
in infinite lattices that is similar to the TKNN invariant for
the integer quantum Hall effect.26 In disordered systems with
boundaries, Fu and Kane17 defined a topological invariant in
terms of pumping of the occupancy of Kramers-degenerate

edge states. We have given a definition of a topological in-
variant valid for disordered systems without boundary, i.e.,
without appeal to edge states. The “Chern parity” can be
thought of as describing either a finite system with boundary
phases or an arbitrarily large supercell in an infinite lattice
system with well defined wave vector. A physical effect of
Chern parity is that it determines whether the amount of
charge pumped in a certain type of closed pumping cycle is
even or odd. The ordinary and topological insulator phases
can be distinguished by this invariant as long as many-body
effects do not prevent description of the ground state as a
Slater determinant. Chern parity in the spin quantum Hall
effect is the natural generalization of Chern number in the
integer quantum Hall effect.

In a disordered system, the only degeneracies expected to
survive are Kramers degeneracies at time-reversal-invariant
values of the boundary phases. In this case, each pair of
states related by Kramers degeneracies can be assigned its
own Chern parity, and the overall Chern parity of all occu-
pied state pairs determines the observable phase. The lattice
algorithm for Z2 topological invariants laid out by Fukui and
Hatsugai19 allows numerical identification of the topological
insulator phase in disordered QSH systems. Implementing
this algorithm for the specific graphene model Hamiltonian
of Kane and Mele6 with added on-site disorder, we observe
the ordinary and topological insulator phases in simulations.
While the number of odd pairs �state pairs with odd Chern
parity� varies with the disorder realization, there is an even
number of odd pairs in the ordinary insulator, and an odd
number of odd pairs in the topological insulator.

We find that a metallic phase opens up between the two
insulating phases for generic spin-orbit coupling. This agrees
with the prediction of Hikami et al.20 that spin-orbit coupling
can protect a 2D metallic phase from disorder, and confirms
the simulation results of Onoda et al.16 and Obuse et al.21

The methods in this paper could, in principle, be used to
study the three-dimensional case and confirm the argument
in Ref. 40 that only one of the four invariants of a band
structure14,27,28 is stable to disorder. While there is now
strong evidence21 that the phase transitions in the 2D QSHE
are, except for special points, in the previously studied sym-
plectic metal-insulator class, there is as yet no numerical
study of the phase transitions in three-dimensional topologi-
cal insulators.
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