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Abstract
We use the method of bulk-boundary correspondence of topological invariants
to show that disordered topological insulators have at least one delocalized
state at their boundary at zero energy. Those insulators which do not have
chiral (sublattice) symmetry have in addition the whole band of delocalized
states at their boundary, with the zero energy state lying in the middle of the
band. This result was previously conjectured based on the anticipated prop-
erties of the supersymmetric (or replicated) sigma models with WZW-type
terms, as well as verified in some cases using numerical simulations and a
variety of other arguments. Here we derive this result generally, in arbitrary
number of dimensions, and without relying on the description in the language
of sigma models.

Keywords: topological insulators, quenched disorder, Anderson localization

1. Introduction

Topological insulators are non-interacting fermionic systems which are bulk insulators, have
gapless excitations at their boundary, and which are characterized by topological invariants.
As free fermion systems, they are described by the Hamiltonian

∑=
αβ

αβ α βH a aˆ ˆ ˆ . (1)†

Here α β, label points in space, spin and flavor of the fermions.
A procedure developed by Volovik in the 80s [1] to relate the edge states of two-

dimensional (2D) integer Hall systems to the bulk topological invariants in a direct way was
recently generalized to all topological insulators [2]. In effect, that procedure showed that an
edge of a topological insulator is a topological metal, characterized by its own topological
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invariant whose value must be equal to the value of the bulk invariant. All of this was done in
the absence of disorder.

Here we show that a suitable modification of this formalism extends it to the case when
the topological insulators are disordered. It immediately follows from this formalism that the
edge of topological insulators cannot be fully localized by disorder. Furthermore, it is well
known that topological insulators can be split into those without chiral (sublattice) symmetry
and with chiral symmetry [3]. It can then be shown that the edge of non-chiral disordered
topological insulators are characterized by a band of delocalized state spanning the energy
interval between the delocalized bulk states. They are delocalized along the edge while
exponentially decaying into the bulk, as is expected from the proper edge states. At the same
time, the edge of chiral topological insulators has at least one delocalized state at zero energy
while the rest of the states may be localized by disorder.

These statements generally match what is expected from the topological insulators from
the study of sigma models or by using other methods. In particular, the localization of the
one-dimensional edge of 2D topological insulators is very well understood. There is no doubt,
for example, that the edge of an integer Hall state is delocalized regardless of disorder, thanks
to its chiral nature (absence of backscattering). Similar arguments can be made in case of
other 2D topological insulators.

The three-dimensional (3D) topological insulators were also studied in recent years.
Their 2D boundaries, in the presence of disorder, can be analyzed using sigma models. Those
can belong to one of five symmetry classes. Of those, arguably the most important is the AII
topological insulator, or the standard strong time-reversal invariant topological insulators with
spin–orbit coupling [4, 5]. It has no sublattice symmetry. That insulator is known to have a
fully delocalized edge, as confirmed in a variety of studies [6, 7]. This agrees with our claim
that all non-chiral insulators have a band of delocalized states at the boundary.

The remaining four insulators in 3D are all chiral. Among them, the simplest is the
insulator with sublattice symmetry only, known as AIII topological insulator. Its edge is
described by 2D Dirac fermions with random gauge potential [8]. Surprisingly, it was shown
only a few years ago that when the random gauge potential is zero on the average these
insulators have either a fully delocalized edge or an edge with localized states with locali-
zation length which diverges as energy is taken to zero, depending on whether their topo-
logical invariant is even or odd [9]. This results is obtained by mapping the problem at finite
energy into a Pruisken-type sigma model with a topological term which corresponds to
exactly the point of the integer quantum Hall transition it describes if the invariant is odd
integer, and to the localized quantum Hall plateau if the invariant is even integer. However,
this result is not completely robust: adding a constant magnetic field to the random gauge
potential shifts the coefficient of the Pruisken-type sigma model, potentially localizing all
states except those at zero energy, in all cases [10].

The next is the insulator in class DIII represented by a superfluid 3He in its phase B. By
mapping it into a sigma model, one finds that, similarly to the AIII case, this insulator has an
edge which is either fully delocalized if the invariant is odd (like for 3He where it is exactly 1)
or with just one delocalized state at zero energy if the invariant is even. Technically this
occurs because at finite energy an edge of such an insulator crosses over to the symmetry
class AII which has a =2 structure.

The insulator in class CI (represented by an exotic spin-singlet superconductor [11]) is
known to have a fully localized edge except one state in the middle of the band, since at finite
energy its edge crosses over to class AI, time-reversal invariant spin rotation invariant systems
which were known for a very long time to be localized in two-dimensions [12].
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Finally, the topological insulator in class CII, the most exotic of the five topological
insulators in three-dimensions, has a fully localized edge except one state, as can be argued
based on its mapping to the trivial (non-topological) AII insulator at finite energy.

All of these examples match what follows from the arguments which are presented in this
paper. However, we note that a variety of chiral insulators, at least in three-dimensions, have a
fully delocalized edge going beyond the prediction of at least one delocalized state given here.
Whether our method can be generalized to explain these additional features is not known.

On the other hand, our method works not only in two or three-dimensions, but also for all
topological insulators of arbitrarily large spacial dimension where sigma models might be
difficult to analyze.

Finally we would like to point out that there exists an alternative method of studying
topological insulators with disorder, based on the non-commutative Chern number and its
generalizations [13–17]. These methods provide yet another way to look at the boundary of
topological insulators with disorder [13], which may well prove to be more powerful than the
methods discussed here.

2. Topological invariants of disordered insulators

We start with non-chiral topological insulators in even-dimensional space d. When disorder is
absent they are characterized by the topological invariant which can be constructed out of its
Green’s function

ω= − −G [i ] . (2)1

Assuming translational invariance, the Green’s function takes a form of a matrix ωG k( , )ab

which depends on the frequency ω and the d-dimensional lattice momentum k with indices a,
b labeling bands as well as spin and flavor. The topological invariant is known to take the
form

∫ϵ ω= ∂ … ∂α α α α… − −N C k G G G Gtr d d . (3)d d
d 1 1

d d0 0

Here Cd is a constant which makes Nd an integer, known to be given by

π
= −

++

( )
C

d

!

(2 i) ( 1)!
. (4)d

d
2

1d
2

Each of the indices α0, α1,…, αd in equation (3) is actually implicitly summed over the values
0, 1, …, d, and a convenient shorthand notation is introduced

∂ ≡ ∂
∂α

αk
,i

i

where furthermore k1, k2, …, kd are the cartesian components of the d-dimensional vector k,
with an additional notation ω≡k0 . This type of a summation will occur throughout the paper.
To simplify notations, from now on to describe it we will simply say that each of the indices α
is being summed over ω, k1, …, kd. Other notations in equation (3) include ϵ as the Levi–
Civita symbol and tr as the trace over the matrix indices of Gab. The integration over ω is
taken from −∞ to ∞, while the integration over k is over the first Brillouin zone of the lattice
where equation (1) is defined. This invariant, if equation (2) is taken into account, is nothing
but the Chern number of negative energy (filled) bands at d = 2, second Chern number at
d = 4, etc.
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The fact that equation (3) is an integer valued topological invariant relies on the existence
of the homotopy group

π =+  & = d(GL( , )) , even, (5)d 1

and on the fact that Green’s functions given in equation (2) are not singular (have neither zero
nor infinite eigenvalues; the latter follows from the system being an insulator and  having
no zero energy eigenvalues). The equivalence of the topological invariant equation (3) with
the Chern number was first discussed in [18]. More generally, the invariants of this form,
inducing the precise coefficient given in equation (4) in front to make them integer, are
introduced and discussed in [1, 3]. It is actually very straightforward to check that
equation (3) is an invariant as any perturbation of the form δ→ +G G G keeps equation (3)
unchanged. It is a little more difficult to check that it always produces integer values [3].

Once the insulator is disordered, it is no longer translationally invariant and equation (3)
loses any meaning. An alternative form for the topological invariant can be introduced in the
following way.

Following [18] (see also [19]), introduce the finite size system such that the wave
function for each particle satisfies periodic boundary conditions with an additional phases θi,
where = …i d1, , labels d directions in space. In other words

ψ ψ+ = θ( )x L xe ( ) (6)i i
i i

for a particular coordinate xi, where Li is the size of the system in the ith direction. Then one
introduces a Green’s function θαβG ( ) which is no longer Fourier transformed, but which
depends on the d angles θ. Here α, β label not only spin and flavor of the fermions but also the
sites of the lattice. The topological invariant is given by essentially exactly the same formula,
(3), but just interpreted in a slightly different way. The indices α0, …, αd are now summed
over ω, θ θ…, , d1 , and the symbol tr implies summation over all the matrix indices, while the
integral is performed over ω θd dd

∫ϵ ω θ= ∂ … ∂α α α α… − −N C G G G Gtr d d . (7)d d
d 1 1

d d0 0

Here the integration over each θ extends from π− to π and the trace is over the matrix indices
of αβG .

In case when there is no disorder, the invariant introduced in this way coincides with the
invariant defined in terms of momenta. Indeed, we can take advantage of translational
invariance and reintroduce the momenta in equation (7). Due to the periodic boundary
conditions with the phases, the momenta are restricted to the values (for each of the d
directions) π θ= +( )k n L2i

n
i i i

( ) with ni being integers. Integration over θi and summation
over ni together are now equivalent to an unrestricted integration over all the values of k, as in
equation (3). Thus in the absence of disorder, equations (3) and (7) are equivalent. Yet unlike
equation (3), the expression in terms of phases equation (7) can be used even in the presence
of disorder when translational invariance is broken.

If d is odd, then equation (3) is zero. Instead we follow [3] and consider insulators with
chiral symmetry, such that there is a matrix Σ

Σ Σ = − . (8)

As well known, only the insulators with this symmetry have invariants of the integer type in
odd spatial dimensions. The invariant itself, without disorder, can be written as follows
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∫ϵ Σ= ∂ … ∂α α α α
−

… − −N
C

k V V V V
2

tr d . (9)d
d d1 1 1

d d1 1

Here α α…, d1 are summed over k1 to kd each, and

= = −ω= −V G . (10)0
1

(We could equally well use  instead of V in the definition of the topological invariant, but
use V to smoothen the difference between even d and odd d cases.) Again, in case if there is
disorder present (which preserves symmetry equation (8), we can rewrite the invariant in
terms of phases

∫ϵ θ Σ= ∂ … ∂α α α α α
−

… − −N
C

V V V V
2

tr d . (11)d
d d1 1 1

d d1 2 1

Here α α…, , d1 are summed over values θ1 to θd each.
Again, simple arguments can be given that these two expressions for Nd in case when

there is no disorder coincide. Once the disorder is switched on, equation (9) loses any
meaning, while equation (11) can still be used.

We will not separately study the invariants of the type =2, as those can be obtained by
dimensional reduction from the invariants of the type = introduced above. This will be briefly
discussed at the end of the paper.

3. Boundary of topological insulators

3.1. Boundary of a disorder-free topological insulator

Following our prior work [2], we would like to consider a situation where a domain wall is
present such that the topological insulator is characterized by one value of the topological
invariant on the one side of the domain wall and another value on another side. We would like
to examine the nature of the edge states forming at the boundary.

Let us first review the approach taken in [2] in case when there is no disorder. It is
possible to introduce the Green’s function of the entire system ω … ′−G k k s s( ; , , ; , )ab d1 1 .
Here k1, …, −kd 1 span the boundary separating two insulators, and s is the coordinate per-
pendicular to the boundary where the system is not translationally invariant, see figure 1. With
its help it was furthermore possible to introduce the Wigner transformed Green’s function

Figure 1. A d-dimensional system with a domain wall separating two phases, one with
a topological invariant NL at large negative coordinate s and one with a topological
invariant NR at large positive coordinate s. The insulator is translationally invariant in
the direction perpendicular to s so that direction can be spanned by the −d 1
momenta k.
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∫ω ω= … + −− −G R r G k k R
r

R
r

k( , , ) d e ; , , ;
2

,
2

. (12)ab
W k r

ab d
i

1 1d ⎜ ⎟⎛
⎝

⎞
⎠

Here k now denotes all d momenta k1, …, kd. We can now introduce the concept of a Green’s
function on the far left of the boundary and the far right of the boundary

ω ω

ω ω

=

=
→∞

→−∞

G G R

G G R

k k

k k

( , ) lim ( , , ),

( , ) lim ( , , ). (13)

R

R

W

L

R

W

These can now be used to calculate the topological invariant on the right and on the left of the
boundary, NR

d and NL
d respectively, according to equations (3) or (9), depending on whether d

is even or odd, with GR and GL substituted for G. Since we are considering a situation where
the boundary separate two topologically distinct states, these two values are distinct, =N Nd

R
d
L.

Furthermore, as it was discussed in [2], there is also a boundary topological invariant,
which can be defined with the help of the original Green’s function ω … ′−G k k s s( ; , , ; , )ab d1 1

by

∫ϵ=

= ◦ ∂ ◦ ⋯ ◦ ∂

α α α α α α

α α α α α

− … …

… −

− −

− −

N C n X

X G G G

d ,

Tr . (14)

d
B

d 2

1

d d

d d

0 1 1
0

1 1

1 2 1 1 1
⎡⎣ ⎤⎦

Here we introduced convenient notations ◦A B and ATr , following [2], where

∫
∫

∑

∑

◦ ″ = ′ ′ ′ ″

=

( ) ( )A B s s s A s s B s s

A s A s s

( ) , d ( , ) , ,

Tr d ( , ). (15)

ac
b

ab bc

a
aa

The integral in equation (14) is over a −d 1-dimensional surface in the d-dimensional space
formed by ω, k1, …, −kd 1. αn 0 is a vector in this d-dimensional space normal to the surface
which is being integrated over. This surface is closed and surrounds the singularities of G in
this space (those are present because the boundary is not an insulator and has gapless
excitations; thus at ω = 0 the zero eigenvalues of , related to G via equation (2), make G
singular). In fact, it is the presence of these singularities which makes equation (14) to be non-
zero [2]; in their absence it can be shown that X is a divergence-free vector and thus the
boundary invariant vanishes.

It was shown in [2] that

− =N N N . (16)d
R

d
L

d
B

(A much earlier work [1] showed this for d = 2.)
If the space is of odd-dimensions, closely similar definition of NB

d can be given, with
equation (16) still valid. For completeness, let us give them here. We now have a system with
a chiral symmetry, implying that

Σ ω Σ ω= − −G G( ) ( ). (17)
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The boundary invariant can now be defined with

∫ϵ

Σ

=

= ◦ ∂ ◦ ⋯ ◦ ∂

α α α α α

α α α α

−
… …

… − −

− −

− −

N
C

n X

X V V V V

2
d ,

Tr . (18)

d
B d 3

, ,

1 1

d d

d d

1 1
1

2 1

2 1 2 1
⎡⎣ ⎤⎦

Here

ω… ′ = … ′ ω− − =( ) ( )V k k k s s G k k s s, , , ; , , , , ; , . (19)d d1 2 1 1 1 0

Indices α1 to α −d 1 are summed over k1, k2, …, −kd 1. The integral is over a −d 2-dimensional
surface in the −d 1-dimensional space formed by k1,…, −kd 1. The bulk invariants can still be
computed using equation (9), with =

ω=
V GR R

0
substituted for , and similarly for VL.

The boundary invariant NB
d can be useful in analyzing boundary theories of particular

topological insulators. These boundary theories must have non-zero boundary invariants,
which in case when the boundary is between a non-trivial insulator and an empty space
(whose invariant is zero) must be equal, up to a sign, to the bulk invariant.

3.2. Boundary with disorder

We would like to generalize NB
d to the case when disorder is present. It is clear that we need to

replace the momenta k1, …, −kd 1 along the boundary with −d 1 phases across the boundary
θ θ… −, , d1 1. However, it is not immediately clear what to do in the direction perpendicular to
the boundary.

In order to deal with this direction, we use the following trick. Imposing phases across
the system is tantamount to periodically replicating our system in space (with disorder being
exactly the same in each replica), with the phase θ becoming equivalent to the usual crys-
talline quasi-momentum. Recall that in the absence of disorder we work with variable s
conjugate to the momentum kd. A variable conjugate to the quasi-momentum is the discrete
variable = ± ± …m 0, 1, 2, which labels replicas of the system.

Therefore, to maintain the continuity with the previous approach taken in the absence of
disorder, we also periodically repeat the system in the direction perpendicular to the
boundary. However, in that direction we should also ensure that the Hamiltonian changes
close to the boundary, in such a way that once we move past the boundary the system goes
into a different topological class with a different invariant. We can make the Hamiltonian
change from a replica to a replica as well as within replicas (by varying some appropriate
parameter in it) until the system goes through a transition somewhere within a particular

Figure 2. A d-dimensional system periodically repeated. Each rectangle represents a
system with disorder. That disorder is identical in every spatial replica of the system.
However, a certain parameter in the Hamiltonian varies from replica to replica, as well
as within replicas, along the direction of the discrete coordinate s so that at some point
the system has a boundary to a topologically distinct phase, indicated here by a think
dashed line, whose direction is spanned by the phases θ1 to θ −d 1. Far from the boundary
that parameter asymptotically reaches the two values corresponding to the left phase
with the topological invariant NL and the right phase with the topological invariant NR.
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replica where the boundary between two topologically distinct states resides. Far away from
the boundary on either side of it the Hamiltonian no longer changes from replica to replica. It
is even possible, if desired, to make this parameter change across just the single replica, and
staying constant in the rest of the replicas (although it we shall see below, it is advantageous
to work in the limit when the parameter changes very little across each replica and it takes
many replicas for it to reach its asymptotic far from the boundary value). This is schematically
shown in figure 2.

Although this may appear to be a rather special kind of a setup with systems with
periodically repeated disorder, it should be clear that this constitutes just a convenient
approach which allows to probe the boundary, which really occurs within a particular replica
of the system, as shown in figure 2. The rest of the replicated systems are there just for
allowing the formalism presented here to describe simultaneously the boundary and the
insulator far away from the boundary. Assuming that there are only two phases in the
replicated systems, the one in replicas on the left of the boundary, and the one in the replicas
on the right of the boundary, there is only one boundary here which separates topologically
distinct systems (the boundaries between replicas do not separate systems which are topo-
logically distinct).

Labeling the replicas of the system in the direction perpendicular to the boundary by the
(discrete) variable m, we can define the Green’s function of the replicated system as

ω θ θ… ′−G m m( ; , , ; , )d1 1 . Here θi, = … −i d1, , 1 phases are quasimomenta (or phases)
across the −d 1-dimensional boundary, and the remaining variables m, m′ label copies of the
system in the direction perpendicular to the boundary.

Given this Green’s function we define the Wigner transformed function by Fourier series
(compare with equation (12))

∑ω θ θ ω θ θ… = … + −θ− −( )G M G M
m

M
m

; , , ; e ; , , ;
2

,
2

. (20)W
d

s

s
d1

i
1 1d ⎜ ⎟⎛

⎝
⎞
⎠

Here M can be either integer or half-integer, and the summation over m goes over either even
integers or odd integers respectively. Given this function, we can again find the far left and far
right Green’s function

ω θ θ ω θ θ

ω θ θ ω θ θ

… = …

… = …
→∞

→−∞

( ) ( )

( ) ( )

G G M

G G M

; , , lim ; , , , ,

; , , lim ; , , , . (21)

R
d

M

W
d

L
d

M

W
d

1 1

1 1

These can be used to define the left and right invariants according to equation (7) for even d,
withGL R, substituted for G, or according to equation (11) for odd d, with

ω=
GL R,

0
substituted

for V.
Now the difference −N NR L is again expected to be equal to NB, the boundary invariant.

This invariant is defined analogously with equations (14) and (18) for d even and odd
respectively, with the momenta replaced by the phases. If d is even

∫ϵ=

= ◦ ∂ ◦ ⋯ ◦ ∂

α α α α α α

α α α α

− … …

… −

− −

− −

N C n X

X G G G

d ,

Tr , (22)

d
B

d 2

1

d d

d d

0 1 1
0

1 1

1 1 1 1
⎡⎣ ⎤⎦

where the indices αi are summed over ω, and θ1, …, θ −d 1, and the integration over s (implicit
in the definitions of Tr and ◦A B in equation (15)) is replaced by summation over m.
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Similarly for d odd we can use construct the boundary invariant by using

∫ϵ

Σ

=

= ◦ ∂ ◦ ⋯ ◦ ∂

α α α α α

α α α α

−
… …

… − −

− −

− −

N
C

n X

X V V V V

2
d ,

Tr , (23)

d
B d 3

, ,

1 1

d d

d d

1 1
1

2 1

2 1 2 1
⎡⎣ ⎤⎦

where = ω=V G 0, and αi are summed over θ1, …, θ −d 1.
The integrals in equations (22) and (23) are taken over closed surfaces in the d-dimen-

sional (if d even) or −d 1-dimensional (if d is odd) space.
The derivation of equation (16) for this disordered case is essentially the same as in the

disorderless case presented in [2]. The only (minor) difference is that here M and m are
discrete variables. The derivation of [2] relies on gradient expansion in powers of derivatives
with respect to the variable M and it seems to be essential in this technique for M to be a
continuous variable. In order to work with M as if it were continuous variable we need to
ensure that our system changes little asM is increased by 1, or in other words the parameter of
the system whose change results in the topological phase transition changes just slightly as
one goes from replica to replica. Therefore, at this stage of the derivation we have to assume
that the system changes just slightly from replica to replica as one moves in the direction
perpendicular to the boundary (in particular, a setup where the parameter controlling which
phase the system is in changes only within one replica should not be used here). However, as
always in the gradient expansion of integer valued topological invariants, small corrections to
them coming from terms neglected as M is made a continuous variable must vanish to ensure
that the result is still an integer. Similar issues are discussed in a somewhat related context in
[2]. As a result, we expect that even as the variations in the parameters from replica to replica
become larger, the approximation of continuous M remains exact. Thus we come to the
conclusion that when properly defined equation (16) holds also in the presence of disorder.

3.3. Analysis of the boundary invariants in the presence of disorder

We would now like to analyze the boundary topological invariants. Take the invariant from
the equation (22) (applicable when d is even). The integral in equation (22) is computed over
a closed surface in the d-dimensional space formed by the frequency ω and −d 1 phases
spanning the boundary of the system. The choice of the surface is arbitrary, as long as it
encloses the points or surfaces where G is singular (see [2] for the discussion concerning the
surface choice).

It is then natural to choose as a surface to be integrated over the two planes at two values
of the phase θ Λ= ±−d 1 , as it is done in our prior work [2] (the choice of θ −d 1 is arbitrary; any
of θi can be chosen for this construction). Here Λ is such that all the singularities of G lie
between these two planes in the θ-space. Then the boundary invariant can be rewritten as
essentially a bulk invariant in the −d 1-dimensional space formed by frequency and −d 2
phases across the boundary, θ θ… −, , d1 2, with θ −d 1 fixed. More precisely, we can define

∫θ ϵ ω θ=

= ◦∂ ◦… ◦∂

α α α α

α α α α

− − − … − …

… − −

− −

− −

( )N C X

X G G G G

d d ,

Tr . (24)

d d d
d

2 1 2
2

1 1

d d

d d

0 2 0 2

0 2 0 2
⎡⎣ ⎤⎦

Here α0, …, α −d 2 are summed over ω, θ1, …, θ −d 2.
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Then we can rewrite NB
d as

Λ Λ= − −− −N N N( ) ( ). (25)d
B

d d2 2

Therefore, if NB
d is not zero, −Nd 2 is a function of θ −d 1 in such a way that as θ −d 1 changes from

Λ− to Λ, −Nd 2 changes by an amount equal to NB
d . And as we discussed if the boundary we

study is the boundary of a topological insulator with non-zero bulk invariant Nd, = =N N 0d
B

d .
Now −Nd 2 is a topological invariant. The only way for it to change as a function of θ −d 1

is if there is some special value Λ θ Λ− < <−d
c

1 such that at θ −d 1 equal to this value, G
becomes singular. Then at that value −Nd 2 is not well defined, and the difference

Λ Λ− −− −N N( ) ( )d d2 2 can be non-zero.
G is related to the Hamiltonian by ω= − −G [i ] 1. The only way for it to be singular if

ω = 0 and  has a zero eigenvalue. That means, there is a single particle energy level at the
boundary whose energy is zero at θ θ=− −d d

c
1 1. At the same time, when θ Λ= ±−d 1 , that

energy level is not zero.
We can now invoke a well known criterion of localization [20] which states that a

localized level’s energy cannot shift as a function of the phase imposed across a disordered
system. Therefore, in order for NB

d to be non-zero, there has to be at least one energy level
whose energy depends on θ −d 1. That level must be delocalized. (To be even more precise, this
argument gives support to having at least one energy level which is not exponentially
localized, as one can perhaps argue that some levels which are not exponentially localized are
sometimes not fully delocalized either.) For this argument to work, we must also keep the
lengths of the system Li, introduced in equation (6), to be much larger than the localization
lengths encountered in the localized states.

Furthermore, the system we study must have more than one delocalized energy level.
Indeed, zero was an arbitrary reference point for the energy. We can always consider a
Hamiltonian shifted by some chemical potential μ (a position-independent constant)

μ′ = −  . (26)

We can repeat all the arguments for this shifted Hamiltonian. As long as this shift does not
change Nd (the bulk invariant), there should be a delocalized state at new zero energy, or at
energy μ of the original model. Now we can anticipate that the bulk system has states at all
energies, but states in the energy interval Δ− to Δ are all localized. This concept of Δ
generalizes the concept of a gap in case of a disorder-free system. Then for any Δ μ Δ− < < ,
the bulk invariant Nd is insensitive to μ. Then the system has a delocalized state at any energy
μ which spans the interval Δ− to Δ. This concludes the argument about the delocalized states
at the edge of any even-dimensional insulator.

The situation with odd-dimensional insulators is somewhat more restrictive. Their
boundary invariant given in equation (23) can still be rewritten in a way equivalent to
equation (25), with θ− −N ( )d d2 1 given by

∫θ ϵ θ

Σ

=

= ◦ ∂ ◦⋯◦ ∂

α α α α

α α α α

− −
−

… − …

… − −

− −

− −

( )N
C

X

X V V V V

2
d ,

Tr , (27)

d d
d d

2 1
3 2

1 1

d d

d d

1 2 1 2

1 2 1 2
⎡⎣ ⎤⎦

where as before = ω=V G 0. Just as before, at the boundary of a topologic insulator
Λ Λ= = − − =− −N N N N( ) ( ) 0d d

B
d d2 2 . It again follows that there is an energy level which

crosses zero as a function of θ −d 1 at some value θ −d
c

1. That level must be delocalized.
However, no other delocalized levels can be generally expected. Indeed, the Hamiltonian

cannot be shifted by a chemical potential, as before, because we must ensure the symmetry
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represented by equation (8). An arbitrary chemical potential added to the Hamiltonian breaks
it. Therefore, we expect only one delocalized state close to zero energy (in the limit of the
infinitely large system, exactly at zero energy). All other states are generally localized.

This is indeed what is expected from the chiral systems as explained in the introduction.
Some of the chiral systems have only one delocalized state at zero energy. Yet others have
many delocalized states spanning some energy interval centered around zero, similarly to the
non-chiral disordered insulators. The arguments given here cannot establish which of the
chiral systems will have a fully delocalized edge. All one can establish is that at least one state
at zero energy must be delocalized.

3.4. Edge of a topological insulator with Z2 invariant

Finally, let us address the rest of topological insulators described by a invariant =2 taking just
two values, 0 and 1. All topological insulators are described by either an integer invariant of
the types discussed here earlier or the invariant of the type =2 as is well summarized in [3].

Systems with =2 topological invariant can be understood as a dimensional reduction of
the system with an invariant described in this paper by residing in higher dimensions [3, 21].
This construction can easily be incorporated into the formalism used here, as discussed in [2].
Relying on the arguments from this work, we can imagine that higher dimensional system
have disorder which does not vary in the spatial direction we plan to eliminate. Those
dimensions can be spanned by momenta in the Green’s functions, while other dimensions are
still spanned by phases. Setting those momenta to zero we obtain the dimensionally reduced
system with the invariant =2. The boundary states of both higher dimensional = ‘parent’ and
lower dimensional =2 ‘descendant’ system must be delocalized in the same way. Thus we
find that the boundary of =2 topological insulators have a fully delocalized band if they do not
have chiral symmetry or at least a single delocalized state at zero energy if they do have chiral
symmetry.

4. Conclusions

We examined the boundary states of disordered topological insulators and were able to
understand their localization properties by directly examining the topological invariants of
these disordered systems. In doing so, we reproduced what should be considered a widely
anticipated answer. Nevertheless it was only for two and some 3D insulators that this answer
has been derived. Further elaborations were based on the approach of the sigma models with
WZW-type terms, and on their mostly conjectured behavior (although in some low dimen-
sional cases this can be derived). Here we derived this answer without any conjectures in an
arbitrary number of dimensions.

Finally in view of the existence of other methods to look at boundaries of topological
insulators [17], it would be interesting to further explore the connection between these
methods and the one discussed here and see if this could shed additional light on the structure
of the boundary states in disordered topological insulators.
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