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 It is well known, following the pioneering work of
Thouless et al. [1], that the Hall conductance of a free
fermion system is an integer valued topological invari�
ant, in units of e2/h. In recent years the concept of
topological invariants was generalized to a far larger
variety of free electron systems, termed topological
insulators [2], and a plethora of topological invariants
for free fermions in a variety of spatial dimensions was
proposed and classified [3]. These invariants are usu�
ally written in a form specifically adapted to noninter�
acting fermionic systems. For example, they are typi�
cally expressed in terms of single particle Bloch waves
of the underlying noninteracting Hamiltonians. The
topological invariant for the integer quantum Hall
effect is the Chern number characterizing the bands of
free fermions moving in a two dimensional space.

At the same time, it is now well understood that
these topological invariants can be reexpressed in
terms of single particle Green’s functions [4]. In this
form, they are defined even if interactions are switched
on. Their existence reflects the topology of the
Green’s functions. However, a topological invariant
written in terms of Green’s functions no longer corre�
sponds to a response to an external perturbation. For
example, the Chern number reexpressed in terms of
Green’s functions, once the interactions are turned
on, is no longer necessarily equal to the Hall conduc�
tance (although they remain equal if the interactions
are weak [5], within the integer quantum Hall state).
Nevertheless, they retain certain physical meaning
thanks to a relationship between the topological
invariants in the bulk and at the edge, first derived by
G. Volovik in case of the Chern number type invariant
[6], and subsequently generalized by the authors to a
larger class of invariants in a variety of spatial dimen�
sions in [7]. The edge of a topological insulator is gap�
less and therefore is not an insulator; the edge invari�
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ant is of the type used to characterize topological
(semi)�metals such as the one studied in [8]. The pre�
cise correspondence between the edge and the bulk
invariants is described in [7].

Here we will use this bulk�boundary to calculate
the topological invariant, the Chern number reex�
pressed in terms of single particle Green’s functions,
in a variety of fractional Hall states, where it is by no
means equal to the Hall conductance. We will see that,
quite generally, for the states described by a K�matrix
[9], this invariant is equal to the trace of that matrix. In
a non�Abelian Read–Rezayi state the invariant is
equal to M + 2, where M is defined as in [10]. In par�
ticular, in the Moore–Read (Pfaffian) state [11] at the
filling fraction ν = 5/2, M = 1 and the invariant is
equal to 3. Finally, for the anti�Pfaffian state at ν = 5/2
the invariant is simply 1.

The method we use for calculating the invariant
relies on the detailed knowledge one typically has
about the low energy theory, and thus the Green’s
functions, of the edge of fractional Hall states. Indeed,
the Green’s functions in the bulk are generally not
known, thus evaluating the invariant directly in the
bulk does not seem to be possible. However, the edge
topological invariant requires only the knowledge of
the edge Green’s functions and can be evaluated
directly, which is what we do here. The bulk�boundary
correspondence states that the edge and bulk invariant
are equal, and thus the edge calculation directly pro�
duces the value of the bulk invariant.

The utility of this observation, in our opinion, lies
primarily in the possibility of evaluating the invariant
numerically. Indeed, if a quantum Hall state candidate
is found numerically by exact diagonalization, for
example, in order to facilitate its identification one
may be able to calculate the Green’s functions, and
the invariant, in this state. While the invariant does not
uniquely label different quantum Hall states as follows
from its values listed above, it provides an additional
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test which helps with the identification of the state
found approximately numerically. Note that here we
evaluate the invariant by looking at the edge theory of
the corresponding fractional Hall state. Numerically it
would not be convenient to look at the edge theory
directly, rather it is more convenient to construct the
theory on a sphere, for example. Then a direct evalua�
tion of the invariant in the bulk becomes possible,
which could be compared with the theoretical evalua�
tion via the edge theory.

This invariant may also prove useful in the search
for fractional quantum Hall analogs in interacting
topological insulators in three spatial dimensions.

To proceed, let us state the relationship between the
bulk invariant and the boundary as it stands in two
dimensions. Given the Green’s function for an infinite
two dimensional system Gab(ω, kx, ky),where ω is the
Matsubara frequency, kx and ky are two dimensional
momenta, and indices a, b refer to the bands and/or
spin and flavor of the fermions, the topological invari�
ant is written as

(1)

where α, β, and γ are summed over 0, 1, and 2; k0 ≡ ω;
k1 ≡ kx; and k2 ≡ ky. The subscript 2 in N2 indicates that
this invariant is for two dimensional systems (suitable
generalizations exist in other dimensions).

This number is an integer regardless of the origin of
Gab(ω, kx, ky). In the absence of interactions, G = [iω –
�]–1, where � is the Hamiltonian of non�interacting
fermions. Then N2 is equal to the combined Chern
number of the negative energy, single particle bands,
and thus coincides with the Hall conductance. In the
presence of interactions, it is no longer generally equal
to Hall conductance, but retains its topological nature
(remains strictly an integer).

The bulk�boundary correspondence can be stated as

(2)

where N0 is the edge topological invariant calculated
for the system with a single edge as

(3)

where G(ω, x', x", k) is the Green’s function of a sys�
tem with a single edge, which depends on the momen�
tum k along the edge and the two coordinates x' and x"
perpendicular to the edge (since the system with an
edge is not translationally invariant in the perpendicu�
lar direction), and where Λ is a suitably chosen (suffi�

N2 �αβγ
ωd

2kd

24π2
������������trG 1– ∂kα

GG 1– ∂kβ
GG 1– ∂kγ

G,∫
αβγ

∑=

N2 N0 Λ( ) N0 Λ–( ),–=

N0 k( ) ωd
2πi
������ x ' x''trG 1– ω x' x '' k, , ,( )dd∫∫=

× ∂ωG ω x'' x' k, , ,( ),

ciently large) parameter. For the purpose of Eq. (3) the
inverse Green’s function G–1 is defined by

(4)

The edge invariant N0 encodes the topological infor�
mation about the edge (in fact, signifies that the edge
is a topological metal [6]). For example, in the absence
of interactions N0(Λ) – N0(–Λ) is just the number of
chiral edge modes, so that Eq. (2) simply reflects the
fact that the number of chiral edge modes is equal to
the bulk conductance N2, something which is well
known and can be established in other ways. In the
presence of interactions, the meaning of Eq. (2) is a
little less transparent and was established in [12] to be
the difference between the number of chiral edge
modes and chiral edge zeros.

To further clarify this point, observe that if one
introduces the eigenvalues λn of G,

(5)

then

(6)

which is the sum of windings of the phases of λn as ω
goes from –∞ to ∞ divided by 2π. This last statement
can be used to calculate N0(k) easily. In particular, in
the absence of interactions we have λn = 1/[iω –
�n(k)], where �n(k) are the energy levels of the system
with an edge and with momentum k along the edge,
and N0(k) can be calculated as

(7)

Note that N0 does not evaluate to an integer, because
of the slow decay of λn with ω. However, differences
will still take integer values. Thus N0(Λ) – N0(–Λ)
counts the number of energy levels whose energy
changes sign as k is varied from –Λ to +Λ. This is sim�
ply equal to the number of chiral edge modes. In the
presence of interactions, for example in case of frac�
tional Hall effect, the Green’s function eigenvalues
are no longer of this simple form. Instead, they gener�
ally have not only poles but also zeros as a function of
iω, and N0(k) counts the difference of the signs of the
poles and zeros (see [12] for details).

Let us proceed to calculate the topological invari�
ant Eq. (1) for a variety of fractional Hall states. As a
warm up, let us first consider a simple Laughlin frac�
tional Hall state corresponding to the Hall conduc�

x'Gab
1– ω x x' k, , ,( )Gbc ω x' x'' k, , ,( )d∫

b

∑

=  δacδ x x''–( ).

x'Gab ω x x' k, , ,( )ψb
n( ) x'( )d∫

b

∑ λnψa
n( ) x( ),=

N0 k( ) ωd
2πi
������∂ω λnln∫

n

∑
1

2π
����� λn ω ∞–=

ω = ∞
,arg= =

N0 k( ) 1
2π
����� λn ω ∞–=

ω = ∞arg 1
2
�� �n k( ).sgn

n

∑= =
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tance σxy = 1/(2m + 1) and described by a K�matrix
which reduces to just one number, K = 2m + 1. The
edge Green’s function in the position space for such a
state is [13]

(8)

where v is the velocity of its chiral excitations. Its Fou�
rier transform is given by [13]

(9)

This can be obtained, for example, by introducing new
variables s± = x ± vt in the integral.

We substitute the imaginary frequency ω into Ω =
iω to find

(10)

Then we plug this into Eq. (3). We can now take
advantage of a simple relation, that for any function

(11)

with some real A and B,

(12)

(which follows from Eq. (6)). Then, the substitution of
Eq. (10) into Eq. (3) gives

(13)

so that

(14)

from Eq. (2). This is precisely the difference between
the number of chiral modes and chiral zeros, repre�
sented by the denominator and the numerator of
Eq. (10).

First of all, N2 is indeed equal to the trace of K�
matrix, which in this case is just an odd integer. Also,
we see that N2 is by no means equal to σxy. At the same
time, this invariant is identical to the one computed
for integer quantum Hall effect with 2m + 1 filled Lan�
dau levels. Therefore, this invariant is not a unique
identifier of a state, and does not necessarily change if
a system undergoes a phase transition from an integer
to a fractional Hall state.

Let us now consider more general fractional Hall
systems described by a K�matrix. Their edge theory is
given by the action [13]

(15)

G x t,( ) 1

x vt–( )2m 1+
������������������������,∼

G Ω k,( ) x t eiΩt ikx–

x vt–( )2m 1+
������������������������dd∫

Ω vk+( )2m

Ω vk–
�����������������������.∼=

G ω k,( ) iω vk+( )2m

iω vk–
������������������������.∼

g iω A–( )α/ iω B–( )β=

ωd
2πi
������g 1– ∂ωg

∞–

∞

∫
1
2
�� β Bsgn α Asgn–( )=

N0 Λ( ) 1
2
�� 2m 1+( ) Λ,sgn=

N2 2m 1+=

S 1
4π
����� x t Kab∂tφa∂xφb Vab∂xφa∂xφb–[ ].dd∫

ab

∑=

Here, Vab is the positive definite matrix of velocities of
edge excitations, while K is the K�matrix, the matrix
with integer entries which defines the topological
order of the fractional Hall state. In this representa�
tion, we assume the operators creating fermions at the
edge are

(16)

Let us compute the fermionic Green’s function, sub�
stitute it into Eq. (2), and compute N2.

To do that, it is advantageous first to note that since
V is a positive definite symmetric matrix, we can
parameterize it in terms of some other symmetric
matrix �,

(17)

Changing the variables from φ to ϕ = �φ (which

now has units of ), we find the new action

(18)

Here, the matrix notation for matrix products is used,
for brevity. It is now convenient to diagonalize the
symmetric matrix

(19)

where Π is a diagonal matrix, and U is an orthogonal
matrix, UTU = 1. Another change of variables

(20)

brings the action to the simple form (20)

(21)

Here, va are the inverses of the diagonal entries of the
diagonal matrix Π, which obviously have units of
velocity. It is straightforward to calculate the correla�
tion functions of  now. They are given by

(22)

Doing the integral results in the expression

(23)

where L is the system size.

Now we are interested in calculating

(24)

ψa e
iΣb

Kabφb.=

V �2
.=

velocity

S 1
4π
����� x t ∂tϕ� 1–

K� 1– ∂xϕ ∂xϕ∂xϕ–[ ].dd∫=

� 1–
K� 1–

UTΠU,=

ϕ̃ Uϕ=

S 1
4π
����� x t ∂xϕ̃a∂tϕ̃a/va ∂xϕ̃a( )2–[ ].dd∫

a

∑=

ϕ̃

ϕ̃a x t,( )ϕ̃b 0 0,( )〈 〉 2πiδab
ω kdd

2π( )2
����������� eikx iω t–

ωk/va k2–
����������������������.∫–=

ϕ̃a x t,( )ϕ̃b 0 0,( )〈 〉 va
L

x vat–
�������������,ln=

Gab ψa x t,( )ψb
† 0 0,( )〈 〉=

=  e
iΣc

Kacφc x t,( )
e

iΣd
Kbdφd 0 0,( )–

〈 〉 ,
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as follows from Eq. (16). To compute that, we work out
φ in terms of  to find

(25)

where the expression in the square brackets is under�
stood as a product of matrices, and |Π|ln[L/(x – t/Π)]
is understood as a diagonal matrix with the diagonal
entries ln[L/(x – vat)]/|va |. Finally, using the standard
formula of Gaussian integration

(26)

we find

(27)

A word must be said about why the off�diagonal terms
in Gab are zero. Evaluating these terms via Eq. (26)
gives, for their L�dependence,

(28)

If a ≠ b the exponent is negative (columns of U� are
linearly independent), so this goes to zero as L goes to
infinity, justifying the Kronecker delta in Eq. (27). If
a = b, this is equal to 1 and Gaa does not depend on L
as indicated in Eq. (27). Equation (27) generalizes the
Green’s functions of fermions given by Eq. (8) to the
case of a generic K�matrix.

We now need to perform a Fourier transform
Gab(x, t). This is hard to do in general, and we expect
that the answer is not as simple as it was in the previ�
ously considered case Eq. (9). However, all we are
interested in is a change in the argument of Gaa(ω, k)
as ω is varied from –∞ to ∞, as explained in Eq. (6).
This can be found in a relatively straightforward way.

Let us calculate the Fourier transform of Eq. (27)
by introducing the imaginary time τ = it directly,

(29)

Here,  = ( )2 > 0, v > 0 is some pos�

itive constant with the units of velocity, and xa = va/v
are some numbers of an arbitrary sign. We are then
interested in calculating the change in the argument of

ϕ̃

Kacφc x t,( )
c

∑⎝ ⎠
⎜ ⎟
⎛ ⎞

Kbdφd 0 0,( )
d
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⎜ ⎟
⎛ ⎞

=  �UT Π L
x t/Π–
��������������⎝ ⎠
⎛ ⎞U�ln
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,

e
iφa x t,( )

e
iφb 0 0,( )–

〈 〉 e
1
2
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2–

=

Gab x t,( )
δab

x vct–( )

1
vc

������� Σd
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2
���������������������������������������.

c

∏∼

Gab L
1/2Σc Σd

Ucd�da Ucd�db–( )[ ]
2 1
vc

�������–

.∼

Gaa ω k,( ) τ x eiωτ ikx–

x ivxcτ+( )
αc

a

c

∏
���������������������������������.dd∫=

αc
a 1

vc

������ Ucd�dad∑

G as k is kept fixed and ω is swept from –∞ to ∞. Let us
show that this change is equal to

(30)

where (k) is the contribution to N0(k) from Gaa (it
needs to be summed over a to find N0(k)) and ma is
defined as

(31)

where ma is an integer because K is integer valued. To
show that this is a diagonal entry of K, we took advan�
tage of Eq. (19).

Now we go back to evaluating Eq. (29). We change
the variables from τ, x to

(32)

This gives (for brevity, we suppress the index a in
the Green’s function and as an upper index of α)

(33)

where φ0 is the angle between the vectors (–k, ω/v)

and the vector (1, 0), r = , q =

, and n = . We rewrite this integral

as

(34)

Further analysis depends on whether xc are positive or

negative. If xc is positive, we take (1 + xc)/2
outside the appropriate bracket, otherwise we do the

same with (1 – xc)/2. We find

(35)

where m was defined above in Eq. (31) and ρc = (1 –
|xc |)/(1 + |xc |), |ρc | < 1.

As ω is swept from –∞ to ∞, φ0 grows from –π/2 to
π/2 if k < 0 and decreases from 3π/2 to π/2 if k > 0. We
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e
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would like to know the change in the argument of G

during this process. The outer explicit factor of 
obviously contributes πmsgnk to that change. Let us
argue that the rest of the expression does not contrib�
ute at all to the change of the argument. To do that, we

rewrite everything which multiplies  in this
expression as

(36)

It is clear that if all ρc = 0 (which corresponds to all
velocities being equal to each other in magnitude and
equal to v), then this expression is independent of φ0

and its argument does not wind at all as a function of
φ0. As ρc values are increased, in order for the argu�
ment to start winding, one should be able to find such
φ0, at some ρc, that this expression is equal to zero (or
infinity, but this expression is finite as long as all |ρc | < 1).

However, if this expression is zero, that means that
the Green’s function has a zero at those values of ρc.
Zeros of the Green’s function can occur only at ω = 0
(see page 168 of [14] or [12] for a slightly stronger ver�
sion of this statement with a more detailed discussion).
ω = 0 corresponds to φ0 = 0 or φ0 = π. However, if such
a zero was to occur, then for a related system with
velocities  = v/va, where  = –ρc, the zeros would
occur at φ = π/2 which contradicts the theorem that
zeros occur only at ω = 0 or ω = π. Therefore, the end
result is that this is impossible. We conclude from this
that Eq. (36) does not wind around zero of the com�
plex plane as φ0 changes from –π/2 to π/2, or from
3π/2 to π/2.

Taken together, this shows that indeed the contri�
bution to N0(k) from Gaa is given by Eqs. (30) and (31)
to be Kaa. Summing over all the entries of the Green’s
function we find that

(37)

That, in turn, leads to the anticipated answer,

(38)

Note that this expression is not invariant under the
change of basis (going from the basic fields φa in
Eq. (15) to some linear combination thereof). Indeed,
the topological invariant is defined in the preferred
basis where the fermion operators are simply defined,
as in Eq. (16). It is possible to rewrite the expression
for the topological invariant in the basis independent
form with the help of the “electron lattice” matrix C
introduced in [15]; since, in the present context, the
purpose of this matrix would just be to take the matrix
K back to the preferred “electron” basis, we omit this.

e
imφ0–

e
imφ0–

r rd

vrn
������ φ eiqr φcos imφ–

1 e
2i φ φ0+( ) xcsgn–

ρc+( )
αc

c

∏
���������������������������������������������������.d

π–

π

∫∫

va' ρc'

N0 k( ) 1
2
�� ktrK.sgn=

N2 N0 Λ( ) N0 Λ–( )– trK.= =

Now, let us now briefly look at the non�Abelian
Read–Rezayi states [10] (which include the Pfaffian,
or Moore–Read, state as a particular case [11]). The
edge theory of these states includes one charged and
one neutral particle (a Luttinger liquid�type boson and
a parafermion, which reduces to a Majorana fermion
in case of the Moore–Read state). The Green’s func�
tions at the boundary can be easily derived from con�
formal field theory and are equal to

(39)

Here, N is the level of the Read–Rezayi state (N = 2
corresponds to the Pfaffian state) and M is an odd pos�
itive integer (even M would correspond to a bosonic
state which we do not discuss here). The filling frac�
tion of these states is known to be [10]

(40)

(this number represents the filling fraction of the par�
tially filled Landau level; in the presence of lower com�
pletely filled Landau levels the filling fraction can be
larger than this number by an integer).

It is now straightforward to use Eqs. (29) and (30)
to find that the topological invariant is the sum of two
exponents in Eq. (39), or

(41)

Interestingly, it is independent of N. For the 5/2 pla�
teau in fractional Hall effect, understood as M = 1,
N = 2 Pfaffian state, this gives N2 = 3, the same as for
the Laughlin ν = 1/3 state.

A final non�Abelian state of interest to us is the
anti�Paffian state at ν = 5/2 [16–18]. Its edge Green’s
function is given by

(42)

Importantly, here the charged and neutral modes are
counterpropagating. As a result, employing Eqs. (29)
and (30) we find that the topological invariant is the
difference of the two exponents in Eq. (42) or

(43)

the same as in the simple σxy = e2/h integer quantum
Hall state. Note that in all these cases, the invariant N2

appears simply to reflect the scaling dimension of the
electron operator [13].

While the value of the invariant would not be help�
ful in trying to distinguish the anti�Pfaffian from a
simple integer Hall state, it can serve to distinguish the
Pfaffian (N2 = 3) from the anti�Pfaffian (N2 = 1) ν =
5/2 state.

In conclusion, we have defined an invariant N2 for
fractional Hall states via Eq. (1) and calculated it for

G 1

x vnt–( )2 2/N– x vct–( )M 2/N+
���������������������������������������������������������.∼

ν N
MN 2+
���������������=

N2 M 2.+=

G 1

x vct–( )2 x vnt+( )
�������������������������������������.∼

N2 1,=
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a variety of fractional and non�Abelian quantum Hall
states. We find that the invariant is not a unique iden�
tifier of the state; a phase transition can occur while
the invariant may stay the same. However, within the
standard low�energy descriptions employed here, it
appears that the invariant cannot change without a
phase transition since its value is defined by the state;
this should be contrasted with the situation in one�
dimensional systems where the invariant can change
without a phase transition [19].

We would like to add one final remark: it is possible
to try to define the invariant not via the Green’s func�
tions but rather via the phases (boundary conditions)
across the system [4] which can lead to an expression
equal to the fractional Hall conductance, unlike the
invariant constructed here, which is always an integer
and is not equal to the Hall conductance. This may be
an interesting avenue to pursue in the future.
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