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Topological invariants and interacting one-dimensional fermionic systems
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We study one-dimensional, interacting, gapped fermionic systems described by variants of the Peierls-Hubbard
model, and we characterize their phases via a topological invariant constructed out of their Green’s functions.
We demonstrate that the existence of topologically protected, zero-energy states at the boundaries of these
systems can be tied to the value of the topological invariant, just like when working with the conventional,
noninteracting topological insulators. We use a combination of analytical methods and the numerical density
matrix renormalization group method to calculate the values of the topological invariant throughout the phase
diagrams of these systems, thus deducing when topologically protected boundary states are present. We are also
able to study topological states in spin systems because, deep in the Mott insulating regime, these fermionic
systems reduce to spin chains. In this way, we associate the zero-energy states at the end of an antiferromagnetic
spin-1 Heisenberg chain with a topological invariant equal to 2.
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I. INTRODUCTION

Topological insulators—free fermionic systems with topo-
logical band structure1–6—are now very well understood. A
band structure can be called topological if it has a nonvanishing
topological invariant, the Chern number first proposed for
the integer quantum Hall effect being the simplest example.7

These invariants imply zero-energy boundary states; it is these
boundary states that distinguish the topological insulators from
their nontopological counterparts and which are crucial for
their physical properties. However, a number of topological
states of matter have been discovered whose existence requires
interactions. Prominent among these are the “topologically
ordered” states in two dimensions as defined by Wen, inspired
by the fractional quantum Hall effect.8 Another example is
the Haldane state of the spin-1 antiferromagnetic Heisenberg
chain.9 Like noninteracting topological insulators, these states
are bulk-incompressible with zero-energy excitations at the
boundary. However, they are substantially different from the
topological insulators in the need for interactions, and their
excitations are often fractionalized relative to the underlying,
microscopic degrees of freedom as, e.g., Laughlin’s fraction-
ally charged excitations in the fractional quantum Hall effect
and the spin-1/2 boundary states of the Haldane state of the
spin-1 Heisenberg chain. It is therefore natural to ask whether
there is a connection between topological band structures and
interacting topological states.

Here, we explore one connection proposed in the literature
in recent years,10–14 where one computes topological invariants
of the single-particle Green’s function rather than the single-
particle Hamiltonian. These invariants coincide in the ab-
sence of interactions, but, unlike single-particle Hamiltonians,
single-particle Green’s functions continue to exist even when
interactions are present. Their topological invariants thus
generalize the free invariants to generic, interacting systems.

In this paper, we use this approach to compute explic-
itly a topological invariant for one-dimensional, interacting,
fermionic systems, and we connect its value to the presence
or absence of topologically protected, zero-energy boundary

states. In particular, we study Hubbard models with dimer-
ization, as well as spin chains, which can be understood as
Mott-insulating phases of the Hubbard models in the strongly
interacting regime. Where possible, we calculate invariants
analytically, but, in the general case, we rely on the numerical
density matrix renormalization group method16–18 and its
time-dependent extension (adaptive t-DMRG19,20) to compute
the invariant as a function of the system parameters. Being
an integer, the invariant is not very sensitive to the errors
inherent in our numerical approach, and so it can be determined
precisely with moderate computational effort. The ultimate
goal of this paper is not so much to calculate the phase diagram
of the models we study as it is to illustrate the utility of
the Green’s-function method of topological invariants when
applied to interacting, one-dimensional, fermionic systems.

While we find this approach to be useful, some caution is
needed in the interpretation of these interacting topological
invariants. First, in the absence of interactions the topological
invariants frequently measure the linear response to external
(frequently electromagnetic) perturbations.7,21 For example,
the Chern number characterizing the integer quantum Hall
states is proportional to the Hall conductance σxy of these
systems. However, this connection is not guaranteed for the
Green’s function invariant of an interacting system. Second,
interactions introduce a novel possibility for the physics at
the boundary not present in free systems. In particular, in the
free system, a nontrivial value for the bulk invariant implies
zero-energy (single particle) excitations at the boundary,
which formally appear as poles of the single-particle Green’s
function. In an interacting system, a nontrivial bulk invariant
is also consistent with zero-energy zeros of the Green’s
function,14 in addition to poles,10,22 which indicates a complete
loss of coherence of the single-particle degrees of freedom. We
will see this explicitly in examples.

In the bulk, this behavior—a singularity of the Green’s
function without a corresponding zero-energy single-particle
state—means that the topological invariant can change its
value (discontinuously) as parameters are varied without
passing through a phase transition. This means that, unlike for
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free systems, these topological invariants do not necessarily
correspond in a simple way to phases of matter. Fortunately,
recent works have addressed this issue for one-dimensional
fermion systems.23–25 These authors find that there are only
four topologically distinct phases, characterized by the value
of the topological invariant modulo 4. [Note that the authors
of these papers also consider fermionic systems for which
the number of particles is not conserved, i.e., without U(1)
symmetry, which leads to eight distinct phases, with Z8

structure. In this paper, we restrict ourselves to systems with
U(1) symmetry and Z4 structure.] Given this knowledge, our
computations of topological invariants provide unambiguous
determination of the topological phase for each model we
consider.

We apply these ideas first to the one-dimensional Peierls-
Hubbard model of spin-1/2 fermions with dimerized hopping
and on-site Hubbard repulsion (see, e.g., Ref. 26). Its invariant
can take on the values 0 or 2. We also briefly treat a
system of two coupled Hubbard chains, which realizes the
Fidkowski-Kitaev model23 and whose invariant can take on
values which are multiples of 4, i.e., this model has only
one phase. We calculate the interacting invariants for these
models using both analytical arguments and the t-DMRG
method. We point out that the existence of the boundary states
in these models can indeed be captured by these invariants,
in accordance with the bulk-boundary correspondence.22 We
further point out that when the invariant is a multiple of 4,
the disappearance of the boundary states is consistent with the
bulk-boundary correspondence, thanks to the replacement of
zero-energy boundary states by zeros in the Green’s function.
Finally, we analyze numerically and with some analytical
arguments a variant of the fermionic Peierls-Hubbard chain
whose parameters are adjusted so that the system is in a
spin-1 Haldane phase. We find that the interacting topological
invariant is equal to 2, showing that the spin-1 Heisenberg
chain possesses the same boundary states as the Peierls-
Hubbard model.

The rest of the paper is organized as follows. In
Sec. II, we introduce the topological invariant for inter-
acting one-dimensional systems. In Sec. III, we introduce
the one-dimensional Peierls-Hubbard model and discuss its
phase diagram, topological invariant, and boundary states
analytically. In Sec. IV, we complete the study of the phase
diagram of the Peierls-Hubbard model and the topological
invariant using the DMRG method. In addition, we analyze
the boundary states in a variant of the Peierls-Hubbard model
with spin interactions that is equivalent to the spin-1 Haldane
chain. In Sec. V, we show that the absence of phase transitions
in the Fidkowski-Kitaev model is compatible with a changing
invariant precisely because the Green’s function acquires zeros
at a certain point of the phase diagram, leading to a change of
the invariant by a multiple of 4. Finally, in Sec. VI, we present
our conclusions and outlook.

II. ONE-DIMENSIONAL TOPOLOGICAL INSULATORS
AND THEIR TOPOLOGICAL INVARIANT

Consider a one-dimensional fermionic system. Two types of
topological invariants are known to exist for these systems (in
the absence of interactions), one with Z structure and one with

Z2 structure. In this paper, we concentrate on those systems
whose invariant is an integer Z. To allow for the existence of
the topological invariant, the imaginary-time single-particle
Green’s function G(k,ω) of such systems must possess the
symmetry14,15

�G(k,ω)� = −G(k,−ω), (1)

where � is some unitary matrix whose square is 1. Here ω

is the imaginary frequency and k is the wave vector. This
symmetry is usually referred to as a chiral symmetry.1,14 In
the absence of interactions, it occurs when a particle moves on
a bipartite lattice; in one dimension, this symmetry is present
for a tight-binding model with nearest-neighbor hopping only.
In the presence of interactions, it appears as a combination of
particle-hole and time-reversal transformations and is also very
ubiquitous. In particular, adding Hubbard-type interactions to
the tight-binding model with sublattice symmetry preserves
Eq. (1).

A Green’s function with the property Eq. (1) is character-
ized by a topological invariant. Defining

g(k) = G(k,ω)|ω=0 , (2)

we can write the invariant as12,13,27

N1 = tr
∫

dk

4πi
�g−1∂kg. (3)

Here the trace is taken over the matrix indices of g (which label
the bands and spin indices of the model we study). Written
in this form, this invariant exists whether or not interactions
are present. One comment is in order: this definition of the
topological invariant differs from the one adopted in Ref. 23
by a factor of 2, since, as was pointed out in Sec. I, we work
with complex (or Dirac) fermions with a conserved number
of particles, while Ref. 23 works with real (or Majorana)
fermions. The subscript 1 in N1 refers to the one-dimensional
space in which it is defined.

It is straightforward to see that N1 is topological, that
is, it does not change if one changes g(k) slightly. Indeed,
if g depends on some parameter α (a coupling constant in
the Hamiltonian, for example), the derivative dN1/dα can be
found to be

dN1

dα
= tr

∫
dk

4πi
� ∂k(g−1∂αg) = 0, (4)

i.e., as an integral over a total derivative. To show that Eq. (4)
holds, one must take advantage of Eq. (1), which implies,
together with Eq. (2), that g anticommutes with �,

�g = −�g. (5)

It is well-known that a basis always exists for which the matrix
� takes the form

� =
(

1 0
0 −1

)
, (6)

where 1 stands for an identity matrix. This allows us to rewrite
the topological invariant, Eq. (3), in a slightly different form
by noting that thanks to the condition (5) as well as to Eq. (6),
the matrix g must have the off-diagonal structure

g =
(

0 v(k)
v†(k) 0

)
, (7)
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where v(k) is some generic matrix. Substituting Eq. (7) into
Eq. (3), we find

N1 = tr
∫

dk

2πi
∂k log v(k) =

∑
n

∫
dk

2πi
∂k log zn(k), (8)

where zn(k) are the eigenvalues of v(k). We see that N1 simply
counts the number of eigenvalues of v that wind around the
origin of the complex plane as a function of k.

In practical applications below, v(k) will often be just
a number or a diagonal matrix, and zn(k) will be very
straightforward to identify. In the absence of interactions, it is
possible to relate G and g directly to the Hamiltonian. Indeed,
a generic noninteracting Hamiltonian looks like

Ĥ =
∑
αβ

Hαβ ĉ†αĉβ, (9)

where ĉ and ĉ† are annihilation and creation operators, and
the indices α and β refer to lattice sites, spin, and flavor of
fermions, if any. Its Green’s function is given by

G = [iω − H]−1 , g = −H−1. (10)

With this identification, the invariant, Eq. (3), becomes
the well-known one-dimensional version of the topological
invariant for noninteracting fermionic systems with chiral
symmetry.1 It is used, for example, to identify topological
phases and boundary states of fermionic chains such as those
studied in Ref. 28 (whose boundary states are often referred to
as Su-Schrieffer-Heeger solitons).

Once interactions are turned on, however, simple expres-
sions such as Eq. (10) are no longer available. The utility of
the topological invariant Eq. (3) lies in the following. First, in
the absence of interactions, the only way for N1 to change is
if g becomes singular at some momentum k. This can happen
only if the system has zero-energy excitations as follows from
Eq. (10), thus implying a quantum phase transition. In the
presence of interactions, N1 can also change if g acquires
zero eigenvalues at some k. [This is impossible in the absence
of interactions as follows from Eq. (10) assuming that the
Hamiltonian is bounded; see also Ref. 29, which relaxes this
assumption.] This is the origin of the possibility that N1 may
change value even in the absence of a quantum phase transition.

Second, suppose we have two adjacent domains where the
invariant N1 takes on two different values, NR

1 in the right
domain and NL

1 in the left one. Then one can show that22

NR
1 − NL

1 = tr �, (11)

where the trace is evaluated in the Hilbert space of the chain
with an open boundary. This constitutes the bulk-boundary
correspondence for this type of topological insulator, and tr �

can be viewed as a boundary topological invariant, as we
will see below. The derivation of Eq. (11) (see, in particular,
Appendix B of Ref. 22) is based on the algebraic manipulations
of the function g, independent of its physical meaning (in
particular, independent of whether interactions are present).

To see the implication of this relation for the boundary
states, we calculate this trace on the basis of the eigenstates
of gαβ , the zero-frequency Green’s function of the open chain
(which is thus not translationally invariant and so g cannot
be reduced to just a function of the momentum k). Every

eigenstate ψn of g with nonzero eigenvalue λn,

g ψn = λnψn, (12)

has a conjugate eigenstate with an opposite eigenvalue,

g �ψn = −λn�ψn, (13)

as a consequence of Eq. (5). It follows that

ψ∗
n�ψn = 0 (14)

because ψn and �ψn are both eigenstates of g with opposite
eigenvalues. Thus eigenstates with nonzero eigenvalues λn do
not contribute to tr �. Only the eigenstates of g with λn either
infinite (poles of the Green’s function at ω = 0) or zero (zeros
of the Green’s function at ω = 0) contribute to the trace. So we
see that tr � must be counting zero-energy states present on
the boundary between two topological insulators, or possibly
zeros of Green’s functions if there are interactions, justifying
its earlier characterization as a boundary topological invariant.

Moreover, all such eigenstates with λn either infinite or
zero are also eigenstates of � with eigenvalues that are either
+1 or −1. To see this, we observe that if ψn is an eigenstate
with a zero eigenvalue, then so is �ψn. By forming linear
combinations ψn ± �ψn, we construct the eigenstates that
are also eigenstates of � with the promised eigenvalues.
Similar arguments can be given for eigenstates with infinite λn.
Thus, tr � counts these types of eigenstates with appropriate
signs. We see that Eq. (11) simply tells us that a boundary
between two topological insulators with different values of
the topological invariant must have either some zero-energy
states, or some zeros of the Green’s function, or perhaps both.

We will see that in practical applications of Eq. (11), a third
possibility can arise. Namely, the existence of zero-energy
excitations signifies that the ground state is degenerate and the
system must pick one of the degenerate states spontaneously.
The ground state chosen in this way may break the chiral
symmetry and Eq. (1) may then break down. In this case,
it may happen that the system has no single-particle zero-
energy excitations and no zeros of the Green’s function, since
Eq. (11) is simply no longer valid. This happens in the
dimerized Hubbard model studied in the next section under
certain conditions. However, the system still has zero-energy
boundary states, which is reflected in the existence of more
than one ground state. It is just that the Green’s function,
which is sensitive to the single-particle excitations only, does
not see those zero-energy excitations corresponding to the
multiple ground states, which are actually of particle-hole type
in this case. The main conclusion remains the same: under
these conditions, a nonzero bulk topological invariant implies
zero-energy states at the edge.

Finally, as we have pointed out in Sec. I, at the boundary of
a topological system with the invariant N1 equal to 0 modulo
4, there should be no zero-energy states. That means that,
instead, there will only be zeros, in accordance with Eq. (11).
The same is true for the boundary between two insulators
with the difference of N1 across the boundary equal to 0
modulo 4. The converse is also true: if the invariant changes
by a number other than 0 (mod 4) across a boundary, there
will always be some zero-energy states. This follows from the
arguments of Refs. 23–25 as well as for the reasons presented
above. One interesting possibility is that the boundary states
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are not of single-particle nature and that the Green’s function
does not actually have any poles at ω = 0, but that there
are zero-energy states that are collective excitations of many
particles. In this case, the Green’s functions will have zeros at
the boundary to satisfy Eq. (11), but the actual system will still
have zero-energy excitations. (However, we have not observed
such a scenario in any of the examples considered in this paper.)

Regardless of the mechanism, the main conclusion is that
if N1 is equal to 1, 2, or 3 modulo 4 (or if it changes by this
amount across the boundary between two insulators), there
must be zero-energy states of some kind at the edge of the
system.

III. ONE-DIMENSIONAL PEIERLS-HUBBARD MODEL

Now let us consider a model of spin-1/2 fermions moving
in one dimension on a line with dimerized hoppings and
on-site interactions at half-filling (one fermion per site). The
Hamiltonian is given by

Ĥ =
∑

j,σ=↑,↓
[t − (−1)j δt](ĉ†j+1,σ ĉj,σ + ĉ

†
j,σ ĉj+1,σ )

+U
∑

j

(
n̂j,↑ − 1

2

)(
n̂j,↓ − 1

2

)
, (15)

where

n̂j,σ = ĉ
†
j,σ ĉj,σ (16)

and ĉ
†
j,σ creates a particle of spin σ on site j = 1, . . . ,L. The

ground state of this Hamiltonian is at half-filling, that is, at
one particle per site. This can be verified by observing that
this Hamiltonian is invariant under a properly defined particle-
hole transformation (see appropriate detailed discussions in
Ref. 14),

ĉ
†
j,σ → (−1)j ĉj,σ , ĉj,σ → ĉ

†
j,σ (−1)j . (17)

Chiral transformations are particle-hole transformations com-
bined with the time-reversal operation. The Hamiltonian
Eq. (15) is time-reversal invariant, so it is also chirally
invariant. As a consequence of chiral symmetry, the Green’s
function satisfies Eq. (1). Chiral symmetry may still be broken
spontaneously by the ground state, in which case the Green’s
function would then violate Eq. (1) despite the Hamiltonian’s
invariance. This observation will be important later on.

For what follows, we need an explicit form of the generator
of the chiral transformation. One can check that it is given by

�̂ =
∏
j

(ĉ†j,↑ + (−1)j ĉj,↑)(ĉ†j,↓ + (−1)j ĉj,↓), (18)

which is both Hermitian and unitary. It is straightforward to
see that

�̂ĉ
†
j,σ �̂ = (−1)j ĉj,σ , �̂ĉj,σ �̂ = (−1)j ĉ†j,σ , (19)

and that

�̂Ĥ �̂ = Ĥ , (20)

which expresses the fact that the Hamiltonian Eq. (15) is
chirally symmetric.

Chiral invariance together with time-reversal (and spin-
rotation) invariance places this Hamiltonian in the symmetry

class BDI,1 although one should remark that normally the
concept of symmetry classes is applied to noninteracting
systems only. But together with our expanded definition of
topological invariants, we can extend this classification to
interacting systems.

In the absence of interactions, i.e., when U = 0, this
Hamiltonian describes a particle hopping on the lattice with
staggered hopping. Its topological invariant is straightforward
to compute. Indeed, the Hamiltonian reduces to a matrix in
this case,

Ĥ =
∑
jj ′,σ

Hjj ′ ĉ
†
j,σ ĉj ′,σ . (21)

To write this matrix in momentum space, we observe that the
unit cell for this chain consists of two sites. By comparing
Eq. (21) to Eq. (15) at U = 0 we deduce that

H(k) =
(

0 t + δt + (t − δt) eik

t + δt + (t − δt) e−ik 0

)
.

(22)

Here the lattice spacing is set to 1, and k ∈ (−π,π ]. In the
same basis, the matrix � takes its standard form,

� =
(

1 0
0 −1

)
. (23)

By means of arguments presented earlier and given by Eqs. (7),
(8), and (10), N1 simply measures the winding of the upper
right corner1 of H around the origin of the complex plane
as k goes from −π to π . This can be seen by substituting
g = −H−1 into Eq. (3) and observing that

N1 = 2
∫

dk

2πi

∂

∂k
log z, (24)

where z = t + δt + (t − δt) eik . The factor of 2 in front of the
integral signifies the fact that there are two identical copies of
g, one for each spin. Finally, one immediately sees that

N1 =
{

2 for δt < 0,

0 for δt > 0.
(25)

We have thus reproduced well-known facts about dimerized,
noninteracting chains. In particular, we see that they have a
topological phase transition if δt is tuned to be zero. If δt is
made space-dependent so that δt > 0 to the right of a given
point in space and δt < 0 to the left of that point, there are
zero-energy states localized in the vicinity of that point (as
mentioned earlier, called Su-Schrieffer-Heeger solitons28 in
this context).

Now let us examine Hamiltonian (15) when U > 0. First
take δt = 0. In this case, this model is also very well
understood. It is a Mott insulator, with a charge gap and gapless
spin excitations described by a spin-1/2 antiferromagnetic
chain.30 The strength of antiferromagnetic couplings between
nearby spins is ∼ t2/U if U 	 t . However, δt 
= 0 dimerizes
the spin-1/2 chain by making its bonds alternate in strength
(while the charge sector remains a Mott insulator). From the
theory of spin-1/2 chains, it is known that a perturbation
consisting of nearest-neighbor spin-spin interactions with
alternating sign is relevant.31 From this discussion, it is natural
to expect that even for U > 0 the system is gapped for all δt
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2t

FIG. 1. A fully dimerized finite Hubbard chain with |δt | = t

consists of bonds of strength 2t (solid lines) and bonds of strength
zero (not shown). The dashed box depicts the unit cell. In the case
shown here, the topological invariant is 0 and there are no boundary
states.

except δt = 0, where a quantum phase transition occurs. This
parallels the case without interactions.

To understand the behavior of the topological invariant for
U > 0, let us consider a limiting case when δt = ±t . The chain
then breaks up into disconnected clusters, each consisting of
two sites only. The Green’s function under these conditions can
be found analytically by solving the two-site problem directly.
However, it is not even necessary to solve the two-site problem
to find the topological invariant. Indeed, the Green’s function
Gjj ′ of this problem is zero unless both j and j ′ belong
to the same two-site cluster. Its Fourier transform depends
on whether a unit cell chosen previously when computing
Eq. (22) coincides with the cluster, or if in a given connected
cluster one site belongs to one unit cell and the other site
to an adjacent unit cell. The two cases are distinguished
by the sign of δt . In the former case, illustrated in Fig. 1,
the Green’s function is momentum-independent. Then g is
also momentum-independent and N1 is obviously zero. In the
latter case, illustrated in Fig. 2, the Green’s function at zero
frequency has the following structure in momentum space:

g(k) =
(

0 g12 eik

g∗
12 e−ik 0

)
. (26)

Indeed, we know that the matrix g must have zeros on its
diagonal because g anticommutes with �, and it is easy
to see that g12 must be a momentum-independent constant.
Regardless of the actual value of g12, as long as the Green’s
function has neither poles nor zeros at ω = 0 (that is, as long
as g12 is neither infinity nor zero), the topological invariant
in this case is N1 = 2, as can be established by substituting
Eqs. (26) and (23) into Eq. (3).

Therefore, we have established that Eq. (25) still applies
even when U > 0 in the extreme case δt = ±t . Earlier we saw
that it also applies for all δt if U = 0. Since we expect this
model to be gapped, with the line δt = 0 in the U versus δt

phase diagram gapless, it is natural to conjecture that Eq. (25)
applies for all δt and all U . We will verify this in the next
section. For now, let us explore what knowledge of the value
of the topological invariant implies for the boundary states of
this insulator.

2t

FIG. 2. A fully dimerized finite Hubbard chain as in Fig. 1, but
with the alternate dimerization pattern; again, the unit cell is depicted
by the dashed box. In the case shown here, the topological invariant
is 2 and there are boundary states located at the isolated sites at both
ends of the chain.

According to the discussion in the preceding section, we
expect that a phase with N1 = 2 has either zero energy states
or zeros of the Green’s function (or both) at its boundary.
We would like to understand which of these possibilities is
realized in our case. To do that, let us reexamine the case when
δt = ±t .

When the unit cell consists of two sites at the ends of a
nonzero bond, there are clearly no boundary states, as can be
seen in Fig. 1 (and in that case, as we just saw, N1 = 0). In the
other case, when N1 = 2, there will be a single unpaired site at
each end of the chain (shown in Fig. 2). The Green’s function
for that site is straightforward to compute. The Hamiltonian of
that single site is

Ĥj0 = U
(
ĉ
†
j0,↑ĉj0,↑ − 1

2

)(
ĉ
†
j0,↓ĉj0,↓ − 1

2

)
, (27)

where j0 = 1 or j0 = L is the unpaired site at either end of
the chain (L is the total length of the chain). The Hamiltonian
acts in the space of four states—an empty site, a site occupied
by a spin-up particle, a site with a spin-down particle, and
a site filled with two particles—with energies U/4, −U/4,
−U/4, and U/4, respectively. The ground state is then a site
with either a spin-up or a spin-down fermion. These two states
are degenerate. Therefore, it tells us that the ground state of
the entire one-dimensional chain with two ends is fourfold
degenerate. These are what we can call the boundary states in
the many-body context.

Let us see how this is reflected in the Green’s function.
Choosing a state with either a spin-up or a spin-down particle
as the ground state, we can calculate the Green’s function
directly from its spectral (Lehmann) decomposition. We find
that the Green’s function at this site is

Gj0,σ ;j0,σ ′ =
(

1
iω−U/2 0

0 1
iω+U/2

)
σ,σ ′

. (28)

Here the 2 × 2 structure of the Green’s function is in spin
space, with the first row and the first column of the matrix
corresponding to the spin-up state if the ground state is chosen
to be the state filled with the spin-down fermion, or vice versa.

We see that the Green’s function has neither poles nor zeros
at ω = 0. The absence of poles is not surprising: the system is
a Mott insulator, and adding or removing a particle should cost
a finite energy, U/2 in this case. Yet we need to see that this is
compatible with, and indeed follows from, the bulk-boundary
correspondence, Eq. (11). At first glance, it contradicts the
correspondence since we have a state with the topological
invariant, N1 = 2, but without zeros or poles of the Green’s
function at ω = 0.

Looking more closely, however, we observe that having a
state with one particle on a site with a given spin violates
particle-hole symmetry. Indeed, the state ĉ

†
j0,↑ |0〉 goes into

ĉ
†
j0,↓ |0〉 under the particle-hole transformation defined in

Eq. (18), and vice versa; the doublet is symmetric, not the
states themselves. Mathematically, this is expressed in the fact
that Eq. (28) does not satisfy Eq. (1). In other words, we
observe that the presence of the many-body boundary states is
reflected in the spontaneous breaking of the particle-hole (and
chiral) symmetry.
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To summarize, we find that N1 = 2 does not result in either
poles or zeros of the Green’s function. This is not compatible
with Eq. (11), as long as Eq. (1) holds. The way out is to
recognize that the violation of Eq. (11) is only possible if
there is a spontaneous breaking of the chiral symmetry and
Eq. (1) is violated. In turn, this means that the ground state is
multiply degenerate, which is a signature of the presence of
zero-energy boundary states. This is how we can reconcile the
value N1 = 2 with the absence of zero-energy, single-particle
boundary states.

But what if δt is close but not quite equal to ±t and the
chain is short enough that the boundary states can entangle and
restore the chiral symmetry? Concentrating on the two ends
of the chain with j0 = 1 and j0 = L, with L the length of the
chain, we find that the ground state must take the form

(αĉ
†
1,↑ĉ

†
L,↑ − α∗ĉ†1,↓ĉ

†
L,↓ + βĉ

†
1,↑ĉ

†
L,↓ + β∗ĉ†1,↓ĉ

†
L,↑) |0〉 ,

(29)

with arbitrary amplitudes α and β such that |α|2 + |β|2 = 1.
Indeed, one can check that this state is an eigenstate of �̂ using
Eq. (18), which for these two sites reduces to

�̂ = [ĉ†1,↑ − ĉ1,↑][ĉ†1,↓ − ĉ1,↓][ĉ†L,↑ + ĉL,↑][ĉ†L,↓ + ĉL,↓].

(30)

Here we ignore all the sites in the bulk, concentrating just on
the two disconnected edge sites.

Calculating the Green’s function via its spectral decompo-
sition yields

Gj0,σ ;j0,σ ′ = δσσ ′

(
1

iω − U/2
+ 1

iω + U/2

)
. (31)

This function is indeed chirally invariant, satisfying Eq. (1).
At the same time, it vanishes at ω = 0.

We see that if the chiral symmetry is restored by considering
a finite chain with a unique ground state, then the bulk-
boundary relation, Eq. (11), is compatible with N1 = 2 by way
of the Green’s functions having zeros at the edges of the chain.
Even though this implies that an N1 = 2 chain does not have
boundary states (something which would have been impossible
in conventional topological chains without interactions), this
lack of boundary states is an effect of the finite length, and the
boundary states are restored when the length of the chain is
taken to infinity.

Finally, while we have only looked at U > 0 so far, a well-
known mapping takes the half-filled Hubbard model at positive
U to one at negative U . This is achieved by transforming

ĉ
†
j,↑ → (−1)j ĉj,↑, ĉj,↑ → (−1)j ĉ†j,↑, (32)

without changing ĉ↓ and ĉ
†
↓. Therefore, the whole discussion

thus far applies equally well to the U < 0 region of the phase
diagram.

Let us now summarize what we have learned by the direct
analysis of the case δt = ±t . If the topological invariant is
nonzero, one of three scenarios is realized. The first scenario
is that the Green’s function has poles at zero frequency,
indicating zero-energy single-particle excitations. This occurs
only at U = 0 in our model. For U > 0 the system is a Mott
insulator, and adding a particle always costs finite energy.

The boundary states, if present, are particle-hole excitations,
not single-particle ones; the single-particle Green’s function
cannot detect them and remains gapped. Nevertheless, either
the Green’s function acquires zeros at the boundary or the
chiral symmetry is spontaneously broken by the boundary.
These possibilities constitute the second and the third possible
scenario, respectively. Either result signifies the presence of
multiparticle, zero-energy boundary states in the limit of an
infinite chain.

Finally, we note that the ground state of the Peierls-Hubbard
model is closely connected to that of a spin-1 Heisenberg
chain. To elucidate this point, let us add a ferromagnetic term
to the Peierls-Hubbard Hamiltonian on every other bond. The
combined Hamiltonian reads

Ĥ =
∑

j,σ=↑,↓
[t − δt(−1)j ](ĉ†j+1,σ ĉj,σ + ĉ

†
j,σ ĉj+1,σ )

+U
∑

j

(
n̂j,↑ − 1

2

)(
n̂j,↓ − 1

2

)
+ J

∑
j

S2j−1 · S2j .

(33)

Here the spin S is defined by

Sj = 1

2

∑
σσ ′

ĉ
†
jσ σ σσ ′ ĉjσ ′ , (34)

and σ is a vector of Pauli matrices.
Since the Peierls-Hubbard Hamiltonian at large enough U

can be thought of as a spin-1/2 chain, adding an explicit
spin-spin interaction simply contributes to the dimerization
of that spin chain. At the same time, it is clear that at very
large negative J � −t2/U , spins will have a tendency to form
a spin-1 moment out of two spins on sites 2j − 1 and 2j ,
converting the spin-1/2 antiferromagnetic chain into a spin-1
antiferromagnetic chain. The spin-1 antiferromagnetic chain
is known to be in the Haldane phase, which is gapped and has
zero-energy edge excitations.

If we switch off J while keeping δt < 0, there is likely to
be no phase transition, and the Haldane state will smoothly
evolve into a state of a weakly dimerized spin-1/2 chain
with topological invariant N1 = 2. This argument supports the
notion that the topological invariant in the Haldane state of a
Heisenberg spin-1 chain is also N1 = 2. Thus, generically,
we expect that the boundary states of spin-1 Heisenberg
chains in the Haldane phase are due to the nonzero value of
the topological invariant. We confirm this qualitative picture
numerically in the next section.

IV. DMRG ANALYSIS OF THE TOPOLOGICAL
INVARIANT

In this section, we discuss numerical results for the topo-
logical invariant in the Peierls-Hubbard model, Eq. (15), and
for the extended model, Eq. (33), in which the ferromagnetic
couplings lead to a Haldane-like ground state.32 We apply a
Krylov variant33 of the adaptive t-DMRG19,20 to obtain the
(real time) Green’s function

G(τ,l) = 〈ĉl (τ ) ĉ
†
L/2(0)〉 θ (τ ) (35)

(here θ is equal to 1 if its argument is positive and 0 otherwise)
for systems with up to L = 250 lattice sites. To keep the
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notation simple, we suppress the spin indices on the fermion
creation and annihilation operators, but the Green’s function
in Eq. (35) is calculated for, say, spin-up fermions. Note that
here and in the following, we use the symbol τ for the time
in order to avoid confusion with the hopping strength t . To
fix the units of energy and time, we set t = 1 throughout the
section (although for clarity we keep t explicitly in some of the
expressions below). We compute the topological invariant by
obtaining the Fourier transform of this quantity, which we then
use to analyze the expression in Eq. (3). However, since the
relevant information is encapsulated in the phase of the Green’s
function, we avoid computing this quantity directly, which
would require the computation of the numerical derivative
∂k G(k,ω), and instead we analyze the winding of the chiral
phase, which we define as

V (k,ω) = arg

[∫ ∞

0
dτ eiωτ

∑
l even

eik( l
2 − L+2

4 )G(τ,l)

]
. (36)

Here, l/2 effectively labels unit cells, k ranges from −π to π ,
and the formula is written assuming L/2 is odd. The winding
V (k,ω) computed at ω = 0 is merely the argument of z(k)
introduced in Eq. (8). [More precisely, v(k) introduced there
can be reduced to a number in our case, and V (k,0) is its
argument.]

Calculating V at ω = 0 directly is not easy due to the
slow convergence of the τ integral, Eq. (36). Instead, we use
the analyticity and continuity of G to calculate its Fourier
transform at a positive imaginary value of ω, which ensures
convergence. This does not introduce an error because the
quantity we seek to calculate is an integer, and therefore is not
sensitive to perturbations.

Note that two complications limit the possible values of
Im ω that can be used for this procedure. First, the magnitude
of Im ω must be such that, for the finite systems under
consideration, times after the perturbation has reached the
edges are suppressed. Hence Im ω � v/L, with v the speed
of the fastest excitations in the system. Second, Im ω should
not be too large compared to typical energies of the system,
since otherwise the structure of the Green’s function will be
determined by (the time cutoff provided by) Im ω rather than by
the eigenstates of the system. We conclude that Im ω should be
chosen to be of the order of the bandwidth, and, for the sake of
simplicity, we choose ω = i for all cases treated in this paper,
without a noticeable effect on the value of the topological
invariant.

As explained below, finite-size effects are of minor impor-
tance. Thus, in order to reduce the computational effort, most
of the results presented are obtained for systems with only L =
22 lattice sites. For these computations, we typically choose a
time step dτ = 0.05 and keep up to m = 500 density matrix
eigenstates in the course of the time evolution, leading to a dis-
carded weight of the order of 10−5 at the end of the time evolu-
tion (τ = 30). We adapt the number of basis states by choosing
a dynamical block state selection scheme (DBSS),34 and we fix
the threshold for the quantum information loss (measured by
the Kholevo bound, see Ref. 35 for details) to χ = 10−7. Note,
however, that, as we discussed above, the main properties of
the chiral phase are determined by the behavior at short times
(τ � 5), so that the accuracy for these results is higher.
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FIG. 3. (Color online) (a) Time evolution of the local density
〈ni〉(τ ) for a system with L = 22 sites, U/t = 2, and δt = 0.3. (b)
Time evolution of the density on the central site for systems with
L = 250 sites, δt = 0.3, and for U/t = 0, 0.3, 1, 2, 10.

Given a chiral phase, we simply plot V (k,i) as a function
of k and check if it winds around the unit circle as k goes over
the Brillouin zone, from −π to π . If it does not wind, then
N1 = 0. If it winds once, N1 = 2. (The invariant is twice the
winding because of spin.)

In addition to computing the chiral phase, Eq. (36), we
also analyze results for the real time evolution of the Green’s
function, Eq. (35), for the local particle density 〈ni〉(τ ), and
for the local spin density 〈Sz

i 〉(τ ), with a particular focus on
the role of edge states in the course of the time evolution. Due
to the mapping (32), we treat only U � 0 and expect the same
behavior for negative U , with charge and spin interchanged.
We start our discussion of the numerical results by considering
the local observables 〈ni〉(τ ) and 〈Sz

i 〉(τ ). In Fig. 3, we show
a typical example for a system of L = 22 sites at U = 2, δt =
0.3. As expected, at τ = 0 the density away from the center is
very close to 〈ni〉 = 1 and does not show any signatures of end
states for either positive or negative values of δt . However, one
realizes that due to the dimerization, the density distribution
on the two central sites at the center of the system is unequal.
In addition, as shown in Fig. 3(b), adding a particle leads to
a larger density on that site with increasing U . For U = 10,
near double occupancy is achieved. Interestingly, in the time
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FIG. 4. (Color online) Time evolution of the local spin density
〈Sz

i 〉(τ ) for (a) U = 2 and δt = 0.3, (b) U = 0, δt = −0.3, and
(c) U = 2, δt = −0.3.

evolution of the density at the central site [Fig. 3(b)], the curves
seem to intersect at τ ≈ 0.5 for small enough values of U .

Edge states appear in the time evolution of the local spin
density 〈Sz

i 〉(τ ). As can be seen in Fig. 4, for positive values of
δt , we find that 〈Sz

i 〉(τ = 0) ≈ 0 away from the central sites.
However, for negative values of δt , boundary states appear.
For small values of U , Fig. 4(b), no signature of boundary
states can be seen at the beginning of the time evolution.

G(τ,l) for U = 2, δt = 0.3

 5  10  15  20
site i

 5

 10

 15

 20

 25

 30

ti
m

e 
τ
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 0.1
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 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

FIG. 5. (Color online) Time evolution of the Green’s function for
a system with L = 22 sites with U = 2, δt = 0.3. In the case shown,
up to m = 750 density matrix eigenstates were kept during the time
evolution.

However, in the course of the time evolution, local spins
(pointing in opposite directions) seem to emerge at the two
boundaries. For larger values of U [Fig. 4(c)], these end spins
are already visible in the initial state and appear to be close
to fully polarized, again with opposite orientations at the two
boundaries. This is consistent with the picture of boundary
states for δt < 0, a picture we subsequently confirm with the
computation of the topological invariant.

Now we turn to the time evolution of the Green’s function.
In Fig. 5, we show typical results for the case of a system with
L = 22 sites, U = 2, and δt = 0.3 for times up to τ = 30,
the maximum time reached. Again, the dimerization leads
to an asymmetry in the initial state. The perturbation in the
center spreads through the system with a typical velocity
that depends on the values of U and δt . No signature of
boundary states can be seen for all values of U and δt treated.
As can be seen, at a time τ ≈ 10, the perturbation reaches
the boundary and gets reflected. This can lead to significant
finite-size effects in the Fourier transform at ω = 0, giving
another reason why one should set ω = i, as discussed earlier.
This effectively suppresses contributions to V from late times,
which are influenced by reflection from the boundaries, and
so better captures the behavior of the infinite system. We find
that for L = 22, all values of U < 10, and −t � δt � t , the
perturbation reaches the boundary at a time τ ≈ 5 or later.
By choosing ω = i, which is a value of the same order of
magnitude as the bandwidth, results for G(τ,l) at times τ > 5
have a very small weight (< 1%) in the Fourier transform
Eq. (36), so that finite-size effects should become minimal, as
further discussed below.

Based on this, in Fig. 6 we present results for V (k,ω = i)
for δt = ±0.3 and U = 0, 2, 10. For positive values of δt , we
do not expect boundary states to be present, and there should
be no winding of V (k,i), while for negative values of δt ,
one winding of V (k,i) should be obtained. This is indeed the
case: as can be seen in Fig. 6, for positive as well as negative
values of δt the function V (k,i) appears to be periodic. As seen
in Fig. 6(a), for δt > 0, the values covered are restricted to a
region π/2 < V (k,i) < π , so that the winding number is zero.
For negative values of δt , however, the values cover the full
range from −π to π , so that the winding is equal to 1. Thus,
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FIG. 6. (Color online) Chiral winding V (k,i) [Eq. (36)] for
systems with L = 22 sites (large symbols, solid lines) and L = 250
sites (small symbols). (a) Results for δt = 0.3 and U = 0, 2, 10.
(b) Results for δt = −0.3 and the same values of U .

we arrive at the main result of this paper: even in the presence
of interactions, the topological invariant is equal to zero or 2
(one winding per spin), and its value reflects the presence of
boundary states.

Now we turn to finite-size and finite-time effects. In Fig. 6,
we compare our results for V (k,i) for U = 0, δt = ±0.3 to
results with L = 250 sites. For L = 22, times τ = 15 or larger
were reached, so that, according to the above discussion,
finite-time effects should not be a major issue. For L = 250,
the computations are more demanding and only times of the
order of τ ≈ 3 were reached in the cases shown. Apparently,
on the scale of the plot, finite-size and finite-time effects seem
to be absent. We further analyze this in Fig. 7, in which we
compare results for system sizes L = 22, 50, and 250 for
U = 10 and δt = 0.3. For L = 22 and 50, times of at least
τ = 12.5 were reached, while for L = 250, only times of
τ = 1.6 were reached. By comparing the results for L = 22
and 50, we see that finite-size effects seem to be practically
absent also in this strongly interacting case. However, the
results for L = 250 seem to be shifted. We associate this with
the small times that were reached. Importantly, this finite-time
effect does not affect the overall behavior, and the winding
number is correctly obtained. We therefore conclude that
computing the chiral phase is, at least in the present case,
a very stable numerical procedure and can be performed with

π/2

3π/4

π

−π −π/2 0 π/2 π
k

V(k,ω = i), U = 10, δt = 0.3
L = 22
L = 50

L = 250

FIG. 7. (Color online) Chiral winding V (k,i) at U = 10 and δt =
0.3 for systems with L = 22, L = 50, and L = 250 lattice sites. While
times τ = 12.5 or larger were reached for the smaller systems, only
times τ = 1.6 were reached for L = 250 sites.

a rather moderate numerical effort for rather small systems
and short times. Finally, we discuss results for fixed values of
U and varying δt , shown in Fig. 8 for U = 10 and L = 22.
As can be seen, for all values of δt � −0.05 shown, one
winding is present, while for all values of δt � 0 there is

FIG. 8. (Color online) Chiral winding V (k,i) for systems with
L = 22 sites, U = 10, and different values of δt : (a) δt � 0;
(b) δt < 0.
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FIG. 9. Phase diagram of the Peierls-Hubbard model given by
Eq. (15), with the value of the topological invariant N1 indicated.
The line δt = 0 separates two gapped phases, topological and non-
topological. The line U = 0 describes the usual noninteracting 1D
topological insulator.

no winding. This is in agreement with the well-known phase
diagram of the Peierls-Hubbard model,26 in which the spin gap
closes on the line (U,δt = 0), signifying a phase transition.
Via computing the topological invariant, Fig. 8 shows that
this phase transition connects a topologically trivial phase
for δt > 0 to one with boundary states at δt < 0. The phase
diagram of the Peierls-Hubbard model with the two phases
identified by the value of the topological invariant is shown in
Fig. 9.

Based on these insights obtained in the Peierls-Hubbard
model, we can now attempt to apply a similar procedure
to other systems. Here, we discuss the chiral phase for the
extended model (33) with spin-exchange interactions. At
U > 0, the chain is a Mott insulator and, just as in the
discussion of the model (15), all its physics is in the interaction
between the on-site spins. For sufficiently large ferromagnetic
coupling J/t � −t2/U , we expect the formation of effective
spin-1 objects, leading to a ground state similar to that of
a spin-1 Heisenberg chain with boundary states. In contrast,
antiferromagnetic coupling enforces the formation of singlets,
so that the situation should be similar to the above discussion
for the Peierls-Hubbard model at δt > 0. In Fig. 10, we present

FIG. 10. (Color online) Chiral winding V (k,i) for the extended
model with spin-exchange terms, Eq. (33), for systems with L = 22
sites, U = 10, and J = 2 (antiferromagnetic case, red squares) and
J = −2 (ferromagnetic case, blue circles).

J

t t t tU

FIG. 11. Graphical representation of the Fidkowski-Kitaev model
of Ref. 23: Two dimerized Hubbard chains are coupled via a “rung”
Heisenberg exchange term.

results for V (k,i) in the strongly interacting case at U = 10
with L = 22 lattice sites for a ferromagnetic J = −2 and an
antiferromagnetic J = 2 with δt = 0. We observe a winding
of 1 (corresponding, as before, to the topological invariant
N1 = 2) if J = −2 and N1 = 0 if J = 2. (Note that t2/U

is 1/10 and is much smaller than J .) This confirms that
for negative J , where we expect this system to be a spin-1
Heisenberg chain, boundary states are present.

We could now investigate other aspects of this system, such
as the critical value of J at which the invariant changes and
the system goes through a quantum phase transition or the
dependence of that transition on δt . However, since this would
lead us too far afield, we leave the investigation of the full
phase diagram of the model Eq. (33) to future studies.

V. ANALYSIS OF THE FIDKOWSKI-KITAEV MODEL

As discussed in the Introduction, a one-dimensional inter-
acting system with a topological invariant that is a multiple of 4
may have no boundary states whatsoever. This means that two
Hamiltonians that are topologically distinct at the quadratic,
noninteracting level can be adiabatically connected by adding
an appropriate interaction. Here we demonstrate that such
a system must have Green’s-function zeros at its boundary.
(Correspondingly, zeros develop at zero energy somewhere
along the path in the parameter space that deforms one such
system into another one with a distinct topological invariant.)

To carry out the demonstration, we present an analysis of
the Fidkowski-Kitaev model,23 which consists of two Peierls-
Hubbard chains coupled by a Heisenberg interaction. The
topological invariant of this model is either 0 or 4, even though
it has only one phase. The Fidkowski-Kitaev Hamiltonian has
a large symmetry that is more apparent when it is rewritten in
terms of real (Majorana) fermion modes, which will be largely
hidden in the treatment that follows.

The Heisenberg interaction between the two chains a and
b, described by fermion operators âiσ and b̂iσ , is

Hspin = JSa · Sb, (37)

where the spin operators are defined in terms of the fermion
operators as before. We assume J � 0 (i.e., is antiferromag-
netic) in the following, so that “rung singlet” is energetically
favorable. The full Hamiltonian is depicted graphically in
Fig. 11.

The addition of the Heisenberg term allows a smooth
interpolation between the two topologically distinct phases
with sgn δt = ±sgn t . Essentially, it provides an extra source
of dimerization in the system that is lost when δt = 0, thereby
keeping the spin waves gapped (in the case U > 0). Let us
outline the argument of Fidkowski and Kitaev to this effect
and then reconcile this with the topological invariants of the
single-particle Green’s function.
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As before, the simplest limiting case of the system is
δt = ±t . In this case, the topologically nontrivial phase for
J = 0 has zero-energy states located purely at the ends of the
chain, with no tunneling. As we have seen, this is true even for
nonzero U , when a single-particle gap opens but two degener-
ate ground states per chain, with a spin-1/2 at the end and no
dynamics, remain. The Heisenberg term then causes a singlet
to form from these spins, with a gap to the triplet excitations.

The bulk part of the fully dimerized chain is gapped,
and adding the Heisenberg interchain interaction does not
change much qualitatively. After all, the dimers of the Hubbard
chain can effectively be described by a Heisenberg interaction
with J ′ ∼ t2/U . Adding the extra Heisenberg term allows
the dimerization to interpolate smoothly from the chains to
the rungs. This means that, for J/t > 0 and U/t > 0, the
tunneling can be turned off entirely without closing the
gap, making the adiabatic continuation between the two
noninteracting phases, which is confirmed by the lack of
zero-energy modes at the ends, possible.

The question is, how can this be consistent with the fact
that the noninteracting phases and the interacting phases with
J = 0 are distinguished by a topological invariant? As before,
the answer is that the bulk single-particle Green’s function
must develop zero-frequency zeros when δt = 0. Similarly, the
Green’s function for the end sites must have zero-frequency
zeros for δt < 0. This situation is distinct from that of a single
Hubbard chain, in which the Green’s function breaks chiral
symmetry due to the degenerate ground state; here the ground
state is unique.

To compute the Green’s function, we must determine the
ground state, the spectrum, and the matrix elements. We will
only consider the Hamiltonian HHub + Hspin; it describes the
end state of the chain with δt = −t or the bulk for t = δt = 0.
When J > 0, the ground state, with energy Egs = −3J/4 −
U , is

|gs〉 = 1√
2

(a†
↑b

†
↓ − a

†
↓b

†
↑)|0〉, (38)

where |0〉 is the Fock vacuum of the a and b fermions. The
single-particle excitations above this ground state, given by
acting on the ground state with a single creation or annihilation
operator, are all degenerate, with energy E1 = −U/2; there are
eight such states. The remaining states have energies J/4 − U

(triplet) and 0. Tuning to the point J/4 = U increases the
symmetry of the model, as discussed at length by Fidkowski
and Kitaev.

The single-particle Green’s function of the decoupled chain
is given by

Gij (ω) = 〈gs|fi(iω + Egs − Hint)
−1f

†
j |gs〉

+ 〈gs|f †
j (iω − Egs + Hint)

−1fi |gs〉. (39)

Here the fermion operator fi takes on the four values a↑, a↓, b↑,
and b↓. Given the properties listed above, the Green’s function
evaluates immediately to

Gij (ω) =
[

1

iω − 3J/4 − U/2
+ 1

iω + 3J/4 + U/2

]
δij .

(40)

This function satisfies chiral symmetry [Eq. (1)], but it does
not have a pole at zero frequency because the single-particle
excitations are gapped. Instead, it has a zero, as Gij (0) = 0.
This confirms the reasoning outlined above.

VI. DISCUSSION AND CONCLUSIONS

In this paper, we have demonstrated the utility of calculating
the topological invariant for interacting topological gapped
systems, working with the example of spinful fermions
hopping on a one-dimensional lattice. While the invariant is
no longer directly related to conductivity or other responses of
the system, it can still be used to deduce whether zero-energy
boundary states are present, thanks to the bulk-boundary
correspondence, Eq. (11). The invariant can be computed
numerically; in this paper, we accomplish this with the DMRG
method. One advantage of computing topological quantities
numerically is that, as integers, they are not strongly prone to
numerical errors.

One could, in principle, ask whether direct numerical
evaluation of the boundary states is no more difficult than
evaluating the topological invariant, or whether it may even be
advantageous. We would like to point out that direct evaluation
of this sort is more prone to numerical errors. The boundary
states are susceptible to finite-size effects. While they could
be lifted away from zero numerically, determining whether
they are topologically protected might then not be easy. The
topological invariant is robust and is only weakly susceptible
to numerical errors. If it is found to be nonzero, the zero-energy
boundary states are guaranteed to exist in the large-size limit.

While direct numerical determination of the topological
invariant such as Eq. (3) can be problematic due to the numer-
ical errors associated with integrating derivatives of functions
determined numerically, in the present one-dimensional case
this was not necessary. Instead, we evaluated the winding
associated with the topological invariants by inspection. For
completeness, let us note that, if desired, we could have
evaluated the invariant without having to inspect the graph
of the chiral phase, Eq. (36), visually. Instead, we could have
found all the solutions ki of the equation

V (ki,0) = V0, (41)

where V0 is an arbitrarily chosen number between −π and π .
Given the set of ki which solves this, we can compute

N1 = 2

(∑
i

sgn

[
∂V (k,0)

∂k

∣∣∣∣
k=ki

])
. (42)

This works for almost all V0 and is V0-independent. [It fails
for those V0 for which V (k,0) has a vanishing derivative at k

being equal to one of the ki .] If the derivative is too small to
determine its sign dependably, a different V0 can be chosen.
As elsewhere throughout the paper, the prefactor 2 has to do
with the two spin components of spinful fermions.

Importantly, the formula Eq. (42) has a natural counterpart
in higher dimensions.36 For example, in two spatial dimensions
one might want to evaluate the winding of a matrix G(k,ω)
given by

1

24π2

∑
α,β,γ

εαβγ tr
∫

dω d2k G−1∂αGG−1∂βGG−1∂γ G. (43)
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Here α, β, and γ are summed over ω, kx , and ky . This is
equivalent to computing the Chern number if there are no
interactions,37 and it can be reduced to a two-dimensional
Berry-curvature integral even with interactions.12,13 Evaluat-
ing the derivatives and the integrals in Eq. (43) numerically
is problematic. Instead, in the important case in which G is a
2 × 2 matrix, one can parametrize it by writing it as a sum over
a unit matrix and the three Pauli matrices with coefficients v0,
v1, v2, and v3. Since the overall normalization is irrelevant, this
corresponds to three parameters (�1,�2,�3) that are functions
of (ω,kx,ky). Then, given ��, we could evaluate the Jacobian at
some special value of ��, an analog of V0 in Eq. (41). The sum
of the signs of the Jacobians so computed is equal to Eq. (43).
This method works if G is a 2 × 2 matrix. Its generalization
to the case in which G is a larger matrix is not known to us,
but should, in principle, exist.

Now that we have established that the method of topological
invariants is useful for studying interacting fermionic systems

in one-dimensional space, it would be interesting to apply
it to other interacting topological insulators. One possible
direction of further research would be to study two- and
three-dimensional topological interacting systems. It might
also be interesting to further apply this method to other one-
dimensional problems, for example, spin chains and ladders
accessible to the DMRG. It also would be worthwhile to clarify
the relationship between this method and recently discussed
symmetry-protected topological orders in one-dimensional
space.38
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