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Z2 topological invariants in two dimensions from quantum Monte Carlo
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We employ quantum Monte Carlo techniques to calculate the Z2 topological invariant in a two-dimensional
model of interacting electrons that exhibits a quantum spin Hall topological insulator phase. In particular, we
consider the parity invariant for inversion-symmetric systems, which can be obtained from the bulk’s imaginary-
time Green’s function after an appropriate continuation to zero frequency. This topological invariant is used
here in order to study the trivial-band to topological-insulator transitions in an interacting system with spin-orbit
coupling and an explicit bond dimerization. We discuss the accessibility and behavior of this topological invariant
within quantum Monte Carlo simulations.
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I. INTRODUCTION

Topological insulators have been intensively explored in
recent years,1,2 especially since their prediction3 and experi-
mental realization in HgTe quantum wells.4 Proposed also by
Kane and Mele in a theoretical model for spin-orbit interac-
tions in graphene5 in search of an intrinsic quantum spin Hall
(QSH) effect, topological band insulators in two dimensions
are characterized in the presence of time-reversal invariance
by a Z2 topological index of the insulating electronic state.6

In the case of noninteracting systems,6 the Z2 topological
invariant can be extracted from the insulating band structure
in analogy to the Thouless, Kohmoto, Nightingale, and den
Nijs (TKNN) classification of Block wave functions relevant
for the integer quantum Hall effect.7 Still in the context
of noninteracting systems, it was found that for inversion
symmetric systems, e.g., in the sublattice-symmetric case on
the graphene lattice, the Z2 topological invariant can be easily
extracted directly from the Hamiltonian matrix of the system
at the so-called time-reversal invariant momenta (TRIM) in
the Brillouin zone.8–10 At these specific momenta, Kramers
degenerate partners share the same band-structure eigenvalues,
and from the parity of the occupied band eigenstates the
corresponding Z2 parity invariant (PI) is easily obtained. This
approach will be reviewed below within a more general setting.

Recently, topological insulators augmented with (strong)
electron-electron interactions have attracted growing attention
(see, e.g., Ref. 11 for a recent review of work on two-
dimensional systems). Hence, the question arises, how the
concept of a topological characterization of an insulating
electronic state can be extended beyond the noninteracting
band-structure regime. An important issue is how such topo-
logical information can be efficiently calculated for interacting
systems, in particular using unbiased numerical methods, such
as quantum Monte Carlo (QMC) simulations. Several means to
calculate topological invariants for interacting electronic insu-
lators have been put forward.12–17 In a nontrivial generalization
from the noninteracting case, these topological quantities
are constructed based on the system’s dressed single-particle

Green’s function, which remains a well-defined quantity also
for interacting systems. Of particular interest from a numerical
perspective are the schemes presented in Refs. 15 and 16,
which allow one to obtain the topological index based solely on
the single-particle Green’s function G(ω,k) at zero frequency
ω = 0 and momentum k. As will be shown below, this
quantity can be easily obtained from QMC calculations. The
calculations can be further simplified for systems with explicit
inversion symmetry, where G(ω = 0,k) needs to be obtained
at the TRIM only,16 similar to the noninteracting case.8 A
description of this approach to extract the PI for interacting
systems, which in addition also exhibit spin Sz conservation,
will be presented below.

Such methods to obtain topological invariants for interact-
ing systems have been applied recently, e.g., to correlated
electron systems in one dimension using the numerically
exact time-dependent density matrix renormalization group
(DMRG) approach.18 For two-dimensional interacting sys-
tems, approximate means to estimate the Green’s function
have been employed; for example the variational cluster ap-
proximation (VCA) has been applied to the Kane-Mele model
with local interactions (the Kane-Mele-Hubbard model19–24)25

to study the transition from the quantum spin Hall topological
insulating phase to the antiferromagnetic Mott insulator regime
at strong interactions. Dynamical mean-field theory (DMFT)
has been employed to study the interaction-driven transition
between topological states in a Kondo insulator26 and cluster
DMFT to study the three-dimensional pyrochlore iridates.27

Here, we set out to employ unbiased and numerically
exact methods to access Green’s function–based topological
invariants in two-dimensional fermion systems. In particular,
we use a projective QMC scheme to study the PI for a
Kane-Mele-Hubbard model with anisotropic hopping, which
exhibits a topological insulator regime, a trivial, nonmagnetic
insulating phase, as well as an antiferromagnetically ordered
Mott insulating regime. We analyze the PI in these phases and
the transitions between them, and assess the PI’s characteriza-
tion of these different regimes. The goal of this paper is not
to provide a detailed analysis of the complete phase diagram
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of this model, but to instead illustrate the actual application of
the Green’s function approach to study topological invariants
in interacting two-dimensional fermion systems.

The rest of this paper is organized as follows: In the
next section, we introduce the dimerized Kane-Mele-Hubbard
model that we explore further below, followed by a review of
how to extract the PI from the zero-frequency Green’s function.
We examine the noninteracting limit of our model, where the
Green’s function and the PI may be easily calculated. After
that, we discuss how to obtain the PI for finite interactions
from QMC simulations, before we then apply this approach to
the dimerized Kane-Mele-Hubbard model.

II. DIMERIZED KANE-MELE-HUBBARD MODEL

In the following, we consider the half-filled Kane-Mele-
Hubbard model19–21,23 with an additional, explicit bond dimer-
ization, described by the Hamiltonian

H = H0 + HSO + HU, (1)

with the nearest-neighbor hopping terms

H0 = −t ′
∑

i

∑
σ

(a†
iσ biσ + H.c.) − t

∑
〈i,j〉

∑
σ

(a†
iσ bjσ + H.c.),

the spin-orbit next-nearest-neighbor term

HSO = i λ
∑
〈〈i,j〉〉

νij

(
a
†
iσ σ z

σσ ′ajσ ′ + b
†
iσ σ z

σσ ′bjσ ′
)
,

and the Hubbard local interaction term

HU = U
∑

i

(a†
i↑ai↑a

†
i↓ai↓ + b

†
i↑bi↑b

†
i↓bi↓).

Here, a
†
iσ (b†iσ ) denote creation operators for spin-σ fermions

on a sublattice-A site (sublattice-B site), with i denoting the
two-site unit cell at position ri on the honeycomb lattice. The
spin-orbit coupling strength is denoted by λ, while νij = ±1
depending on whether the considered hopping process involves
a left or a right turn. We allow for a different nearest-neighbor
hopping strength t ′ along one of the three nearest-neighbor
bond directions, as compared to the other directions; cf.
Fig. 1. Here, the unit cell is chosen such that it contains
a t ′ bond and is centered on this bond. The two lattice

FIG. 1. (Color online) (a) Honeycomb lattice with a unit cell
indicated by dashed lines. The arrows indicate the lattice vectors
a1,2. Bold (red) lines denote bonds with hopping amplitude t ′, while
the hopping amplitude along the other bonds on the honeycomb
lattice equals t . Filled (open) circles indicate lattice sites belonging
to the A (B) sublattice. (b) Brillouin zone with the time-reversal
invariant momenta {�,M1,M2,M3}, and the reciprocal lattice vectors
b1,2 indicated.

vectors of the honeycomb lattice a1,2 = a0(3/2,±√
3/2) are

also shown in Fig. 1(a). In the following, we set the distance
between nearest-neighboring lattice sites a0 = 1. For t ′ = t ,
the usual Kane-Mele-Hubbard model is recovered, which
for finite spin-orbit coupling λ and in the small-U regime
features a QSH topological insulating region, adiabatically
connected to the U = 0 QSH state. Increasing the on-site
repulsion U eventually drives the system into an ordered phase
with long-ranged transverse antiferromagnetic correlations.21

Furthermore, at U = 0, the explicit bond dimerization allows
driving the system from the topological insulator QSH state
to a (trivial) band insulating phase for t ′ > 2t . At t ′/t = 2,
the system is gapless with the bulk gap closing at one of
the M points in the Brillouin zone; cf. Fig. 1(b). This will
be examined in more detail below as well as the properties of
the model for t ′ > t and finite interactions, U > 0. To study
the effects of interactions in terms of the topological invariants,
we employ quantum Monte Carlo simulations to calculate the
imaginary-time Green’s functions of this model Hamiltonian
and then transform to the Green’s function at zero frequency,
from which we extract the Z2 PI for this inversion symmetric
system.

III. PARITY INVARIANT FROM GREEN’S FUNCTION

In an inversion symmetric system, the PI may be calculated
from the system’s Green’s function following Ref. 15, which
generalizes the procedure from the noninteracting case.8 Here,
due to the explicit Sz conservation of the Hamiltonian, the
Green’s function is block-diagonal in spin-space, and the pro-
cedure can be restricted to a single spin sector. The zero-
frequency Green’s function for each spin sector, Gσ (0,k),
where σ = +1 (−1) for spin-up (spin-down), thus is a 2 × 2
matrix in the A/B-sublattice basis. Denoting by b1,2 the
reciprocal lattice vectors (with bi · aj = 2πδij ), we consider
the four TRIM

κn1,n2 = n1b1/2 + n2b2/2, ni = 0,1, (2)

corresponding to the � point and the three M points indicated
in Fig. 1(b), at which the operation of inversion commutes
with the zero-frequency Green’s function Gσ (0,k). Here, the
operation of inversion that interchanges the two sublattices
and squares to the identity can be represented in the sublattice
basis by the first Pauli matrix, P = σx . Simultaneously
diagonalizing the two matrices P and Gσ (0,κn1,n2 ), we identify
for each of the four TRIM the eigenvalue of P for the common
eigenvector with a positive eigenvalue of Gσ (0,κn1,n2 ). These
eigenvectors are referred to as right-zeros or R-zeros in Ref. 15.
Denoting the corresponding P eigenvalue of the R-zero by
ηκn1,n2

, we obtain the PI, 
 ∈ {0,1}, as

(−1)
 =
∏
n1,n2

ηκn1 ,n2
(3)

from any of the two spin sectors, which together form a
Kramer’s pair at each TRIM. It is thus sufficient for the
calculation of the PI to only consider, e.g., the spin-up
sector due to the explicit Sz conservation of the Hamiltonian.
The procedure is however easily generalized to inversion
symmetric systems without explicit Sz conservation.15
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FIG. 2. (Color online) Band structure of the dimerized Kane-
Mele model along the indicated path through the Brillouin zone for
λ/t = 0.2 and different values of t ′, as indicated.

IV. NONINTERACTING CASE

To illustrate the above procedure, let us first consider the
noninteracting limit, i.e., the dimerized Kane-Mele model. For
U = 0, the Hamiltonian H can be diagonalized directly via a
transformation to momentum space,

H =
∑
k,σ

(a†
k,σ b

†
k,σ ) hσ (k)

(
ak,σ

bk,σ

)
. (4)

In each spin sector σ = +1 (−1), the Hamiltonian matrix at
wave vector k equals

hσ (k) =
(

σγk −gk
−g∗

k −σγk

)
, (5)

where gk = t ′ + t(eia1·k + eia2·k) relates to the nearest-
neighbor hopping terms and γk = 2λ[− sin(

√
3ky) +

2 cos(3kx/2) sin(
√

3ky/2)] to the spin-orbit term. The system
described by H conserves Sz, such that the Green’s function
G(ω,k) is block diagonal in spin space, and each spin
component in the noninteracting case equals

Gσ (ω,k) = [ω − hσ (k)]−1 . (6)

At zero frequency this is essentially the inverse of the
Hamiltonian matrix:

Gσ (0,k) = −h−1
σ (k) . (7)

Based on the approach outlined in the previous section, we
then obtain for finite values of λ a change in the PI from

 = 1 for t ′ < 2t to 
 = 0 for t ′ > 2t . This indicates the
change from a topological insulator to a trivial band insulating
state driven by the explicit bond dimerization. At t ′ = 2t , the
system becomes semimetallic due to the single-particle gap
closing at the M3 point, i.e., at k = κ1,1. This can be seen
from the band structure shown for λ/t = 0.2 in Fig. 2. In the
following, we will examine this transition also at finite values
of U . Before performing such an analysis, we first explain
how we extract the PI in the interacting regime from QMC
simulations.

V. PARITY INVARIANT FROM QMC

Once the zero-frequency Green’s function G(0,k) has been
obtained for the interacting model, the PI can be calculated
as outlined in Sec. III. In analogy with Eq. (7) for the
noninteracting case, one can associate to the interacting model
a fictitious Hamiltonian matrix htopol(k) = −G−1(0,k), which
has been dubbed the topological Hamiltonian.17 It contains the
topological information of the interacting model, where for the
free case htopol(k) equals the Hamiltonian matrix of H . Hence,
we merely need to consider how the zero-frequency Green’s
function is obtained from the QMC calculations. In particular,
we employed a projective QMC scheme, by which we obtain
the momentum and spin resolved single-particle Green’s
function in imaginary time within the system’s ground state
on finite lattices. To obtain the PI, we then calculate from the
imaginary-time data of the Green’s function those at Matsubara
frequencies, and continue in particular to zero frequency.
For this purpose, let us first consider the system at a finite
temperature T = 1/β. The imaginary-time Green’s function
Gσ (τ,k; β) at a given momentum k and spin projection σ is a
2×2 matrix with entries

[Gσ (τ,k; β)]j l = −〈ck,σ,j (τ ) c
†
k,σ,l(0)〉β, (8)

where j,l = 1,2 is a sublattice index, with ck,σ,1 = ak,σ

and ck,σ,2 = bk,σ . For frequencies ωn = 2(n + 1)π/β the
Matsubara-Green’s function is then given as

Gσ (iωn,k; β) =
∫ β

0
Gσ (τ,k; β) eiωnτ dτ. (9)

Particle-hole symmetry of the model at half filling, i.e.,
under the transformation c

†
k,σ,j → dk,σ,j = (−1)j c†−k,σ,j in

each spin sector together with inversion symmetry, leads to
the following conditions on Gσ (τ,k; β): For equal sublat-
tices, [Gσ (τ,k; β)]jj = [Gσ (β − τ,−k; β)]jj , while for j �= l,
[Gσ (τ,k; β)]j l = −[Gσ (β − τ,−k; β)]j l .

We thus obtain for the diagonal elements of the Green’s
function at one of the TRIM κ = κn1,n2 the equation

[Gσ (iωn,κ ; β)]jj = 2 i

∫ β/2

0
[Gσ (τ,κ ; β)]jj sin(ωnτ ) dτ,

(10)

and, for j �= l,

[Gσ (iωn,κ ; β)]j l = 2
∫ β/2

0
[Gσ (τ,κ ; β)]j l cos(ωnτ ) dτ.

(11)

Now, the limit β → ∞ can be taken properly: From the
projective QMC, we obtain the ground-state Green’s function
Gσ (τ,κ) = limβ→∞ Gσ (τ,κ ; β), and then perform the above
integrals with a sufficiently large cutoff β → θ , set, e.g., by
the imaginary-time evolution length of the Green’s function θ

employed in the QMC simulations. Here, we used θ = 20/t .
This cutoff proved to be sufficient for the Green’s function
to decay to zero within error bars, especially for large values
of U/t , but for the extreme cases close to the topological-to-
trivial band insulator transition, where the gap becomes very
small. Note, that one cannot simply take the limit iωn → 0
before accounting for the (anti)symmetry conditions on the
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imaginary-time Green’s functions. This would lead to wrong
results, as exemplified below. After (anti)symmetrization, the
limit iωn → 0 can be performed with the T = 0 Green’s
functions, so that in particular,

[Gσ (ω = 0,κ)]jj = 0, (12)

and, for j �= l,

[Gσ (ω = 0,κ)]j l = 2
∫ θ/2

0
[Gσ (τ,κ)]j l dτ. (13)

Hence, within the QMC simulations, one merely needs
to measure the off-diagonal part of the Green’s function
explicitly. To illustrate the above point, consider for a moment
the noninteracting limit, for which the exact T = 0 imaginary-
time Green’s function

Gσ (τ,κ) = −1

2
e−|gκ |τ

(
1 −1

−1 1

)
. (14)

If calculated naively, via
∫ ∞

0 Gσ (τ,�) dτ , one would
(wrongly) obtain a finite value of [Gσ (ω = 0,�)]jj instead
of the actual value (i.e., zero), which also follows in this case
directly from Eq. (6).

VI. QMC RESULTS

After having examined the calculation of the PI for the inter-
acting system in the previous section, we now present results
from QMC simulations of the dimerized Kane-Mele-Hubbard
model. We employ a projector axillary-field determinantal
QMC scheme28 by which we obtain the momentum and spin
resolved single-particle Green’s function in imaginary time
within the system’s ground state for finite lattices with N =
2L2 lattice sites employing periodic boundary conditions.
Here, L denotes the linear system size, which for multiples
of six allows all TRIM as well as the corners of the Brillouin
zone (the so-called Dirac points) to be presented. In particular,
we use a projection length � = 50/t , imaginary-time step

τ = 0.05/t , and linear systems sizes L = 6, 12, and 18. An
imaginary-time evolution length θ = 20/t has been used to
obtain the Green’s function, as discussed in Sec. V. Details on
the employed QMC method in application to the Kane-Mele-
Hubbard model can be found in Ref. 23.

To test the feasibility of extracting the PI within QMC, we
first consider the t ′/t-driven transition between the topological
insulator regime and the trivial band insulator for large t ′
at finite values of U . In the following, we consider λ/t =
0.2, in order to focus on the QSH to dimerized insulator
transition without being compromised by the influence of
the QSH-insulator transition at λ = 0, and without loss
of generality.21,23,29,30 As an example, Fig. 3 shows the
imaginary-time dependence of the off-diagonal component of
the Green’s function at the M3 point at κ11, which in the
following we denote by

Go(τ ) := [G↑(τ,κ11)]12. (15)

Indeed, a change in the PI in our model can be traced
back to a sign change in Go(τ ) [more precisely, in the
corresponding integral of Eq. (13)]. As can be seen from
Fig. 3, for U/t = 2 and λ/t = 0.2, this change occurs between
t ′/t = 1.94 and t ′/t = 1.96, and correspondingly, 
 jumps
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FIG. 3. (Color online) Off-diagonal component of the Green’s
function at the M3 point for L = 6, U/t = 2, and λ/t = 0.2 at various
values of t ′/t . Error bars are of the order of the linewidth and have
been omitted for clarity.

from 
 = 1 to 
 = 0 between these values. This indicates that
for these parameters, the topological-to-trivial band insulator
transition occurs for a slightly smaller value of t ′/t = 1.95(1)
than at U = 0, where the transition takes place at precisely
t ′/t = 2. This can be understood to be the consequence of
the superexchange induced by the local Coulomb repulsion
which favors the singlet formation on the t ′ bonds. At the
transition point, the single-particle excitation gap 
sp closes,
as can be seen from Fig. 4, which shows 
sp at the M point
κ11, obtained from the decay in imaginary time of the diagonal
Green’s function elements [G↑(τ,κ11)]jj ∝ exp (−τ
sp). This
reflects the same gap closing at the transition point as observed
for U = 0 at t ′/t = 2.

While in the small-U region, the QSH state is stable with
respect to interactions and adiabatically connected to the
U = 0 limit, for sufficiently large values of U the system enters
a transverse antiferromagnetically ordered Mott insulating
phase, where the time-reversal symmetry of the Hamiltonian H
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FIG. 4. (Color online) Evolution of the single-particle gap 
sp for
different system sizes as a function of t ′/t for U/t = 2 and λ/t = 0.2
near the quantum phase transition from the topological insulator to
the dimerized phase. The inset focuses in on the transition region.
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FIG. 5. (Color online) Off-diagonal component of the Green’s
function at the M3 point for L = 6, λ/t = 0.2, t ′ = t , and different
values of U from U = 0 to U = 8t (top to bottom). Across the
transition from the QSH insulator to the antiferromagnetic insulator
the Green’s function remains qualitatively unchanged. Error bars are
of the order of the linewidth and have been omitted for clarity. Inset:
The Green’s function shows very little finite-size dependence due to
the large gap induced by the large coupling parameters.

is spontaneously broken in the thermodynamic limit.19–21,23,24

This transition is however not related to a closing of the
single-particle gap, as has been demonstrated by unbiased
QMC simulations. The single-particle gap only exhibits a local
minimum at the transition point, but does not close.21,23 This
result from numerically exact simulations is in contrast to
previous VCA calculations, which concluded that the single-
particle gap closes at the transition to the antiferromagnetic
phase.32 In fact, the Green’s function exhibits no qualitative
change across the transition. This can be seen also from the
QMC data in Fig. 5, where Go(τ ) is shown for different values
of U at λ/t = 0.2 and for t ′ = t .

From previous QMC simulations,21 we know that long-
ranged antiferromagnetic order sets in for these parameters
near U/t ≈ 5 and flux-induced edge states are absent.24 How-
ever, Go(τ ) exhibits no significant changes in this interaction
region. In particular, and in contrast to the t ′ scan considered
above, Go(τ ) does not exhibit a change in its sign. That this
is not a finite-size effect can be seen in the inset of Fig. 5,
where we compare QMC data at U/t = 8 for two different
system sizes, L = 6 and L = 12, which are seen to indeed be
finite-size converged. We verified that also up to U/t = 40,
no sign change occurs in Go(τ ). This implies that the PI

 stays constant when tuning across the antiferromagnetic
transition. We verified explicitly that even at λ = 0 the PI takes
on a nontrivial value in the antiferromagnetic Mott insulating
region.

How does this relate to the quantum phase transition that
takes place when the system enters the antiferromagnetic
region, which is thus not adiabatically connected to the U = 0
state? Only in the thermodynamic limit antiferromagnetic
order persists, which spontaneously breaks time-reversal and
the inversion (sublattice) symmetry of the Hamiltonian. Yet
this is not monitored by the single-particle Green’s function,
on which the calculation of the PI is based. Spontaneous

symmetry breaking in the ordered region implies a degenerate
ground state subspace in the thermodynamic limit. In each
specific ground state from this manifold, the sublattices
A and B are not equivalent anymore, and this condition
for a well-defined PI is broken. Remarkably, even in the
antiferromagnetic region, the degeneracy of the ground-state
manifold implies the existence of low-energy gapless excita-
tions, namely the Goldstone modes. However, these soft spin
excitations are of particle-hole type, and thus not attainable in
the single-particle sector.

Interestingly, once the antiferromagnetic order is destroyed
in the system by a sufficiently strong dimerization t ′, the PI
does change to a trivial value. To explore this behavior, let
us start from the large-t ′ region, t ′ > 2t . Starting at U = 0
from the trivial band insulator region for t ′ > 2t and switching
on local interactions U > 0, the system remains insulating,
and also does not develop long-range order. This can be
most directly seen in the large-U limit. Here, the effective
model for the low-energy physics is a Heisenberg model with
an exchange dimerization along the t ′ bonds: The exchange
interaction J ′ = 4t ′ 2/U in second-order perturbation theory
is more than a factor of 4 larger than the exchange interaction
J = 4t2/U along the other nearest-neighbor bonds, and
also dominates over the weak (for λ/t = 0.2) next-nearest-
neighbor anisotropic exchange coupling J2 = 4λ2/U related
to the spin-orbit terms.19 The strong J ′ dimerization drives
the spin system into a nonmagnetically ordered, dimerized
phase. Indeed, for J2 = 0, the critical ratio beyond which the
antiferromagnetic order vanishes in the Heisenberg model on
the dimerized honeycomb lattice equals J ′/J = 1.735(1),31

which relates here to a ratio of t ′/t ≈ 1.32 in the Hubbard
model in the large-U limit. For t ′ > 2t , the system thus resides
inside a nonmagnetic phase, adiabatically connected to the
trivial band insulator at U = 0. Correspondingly, the PI of the
system does not change upon increasing U at fixed t ′ > 2t .

On the other hand, decreasing the ratio t ′/t at sufficiently
large U , a transition from the large-t ′ nonordered phase
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FIG. 6. (Color online) Off-diagonal component of the Green’s
function at the M3 point for L = 6, U/t = 8, and λ/t = 0.2 at
different values of t ′ between t ′ = t and t ′ = 1.6t (top to bottom).
Error bars are of the order of the linewidth and have been omitted for
clarity.
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to the antiferromagnetic phase occurs, and we observe a
corresponding transition in the PI: In Fig. 6, we consider in
particular the case of U/t = 8 and λ/t = 0.2. Upon varying
t ′/t , we find a change in the sign of Go(τ ), and in more detail,
the PI changes from 
 = 1 to 
 = 0 beyond t ′/t = 1.28(2).
Remarkable is the fact that this transition is again related
to the emergence of low-energy gapless excitations, namely
the Goldstone modes, which appear in the antiferromagnetic
phase, but not in the dimerized phase, where instead a finite
spin-gap separates the singlet ground state from the lowest
triplet excited state, that relates in the strong-J ′ limit to a triplet
excitation on one of the strong J ′ bonds. The single-particle
gap 
sp however stays finite in both phases, as well as across
the transition.

VII. CONCLUSIONS

We explored Green’s function–based methods to obtain
topological invariants in a two-dimensional strongly inter-
acting fermion system that exhibits trivial band insulating,
Mott insulating, and topological insulator regimes. Given an
adiabatic connection for a phase of the interacting system to
the noninteracting limit, we found that the calculated parity
invariant indeed does not change, and thus allows extracting
the direct transition between the topological insulator and the
trivial insulator region for finite interactions. However, since
the parity invariant relates to the single-particle Green’s func-
tion, and hence captures single-particle properties only, it does

not allow monitoring, e.g., the transition to the antiferromag-
netic regime from the topological insulator side. A change of
the parity invariant would require corresponding changes in the
single-particle Green’s function, which are not being observed
in this case. Use of the parity invariant based on approximate
methods to calculate the Green’s function may however lead to
deviating conclusions. For example, the change in the parity
invariant within the variational cluster approximation to the
Kane-Mele-Hubbard model25 is accompanied by a closing of
the gap in the single-particle Green’s function,32 which does
not reflect the actual behavior of this model.21,23 Although
its usage is thus restricted, we have shown that the parity
invariant nevertheless constitutes a readily accessible measure
within quantum Monte Carlo simulations for a large variety
of (quantum) phase transitions from topological to trivial
insulators.

Recently we became aware of a QMC investigation33 which
examined the parity invariant in a related model, focusing on
the interaction region below the magnetic ordering transition.
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